A very interesting complex beta integral:

Click For Summary
SUMMARY

The integral discussed is given by the equation $$\frac{1}{2\pi i }\int^{c+i\infty}_{c-i\infty}t^{-a} (1-t)^{-b-1}\, dt = \frac{1}{b\,\beta(a,b)}$$. The conversation centers on proving this integral, with participants suggesting the use of residues and referencing the Third (Cauchy's) beta integral. The integral can be derived through substitution from the formula $$\int^{\infty}_{-\infty}\frac{dt}{(1-it)^a(1+it)^b}= \frac{\pi 2^{2-a-b}\Gamma{(a+b-1)}}{\Gamma(a)\Gamma(b)}$$ found in Vadim Kuznetsov's paper "SPECIAL FUNCTIONS AND THEIR SYMMETRIES".

PREREQUISITES
  • Complex analysis, specifically contour integration
  • Understanding of beta functions and their properties
  • Familiarity with the Gamma function and its applications
  • Knowledge of residue theorem and its application in integrals
NEXT STEPS
  • Study the properties of the beta function in detail
  • Learn about the residue theorem and its applications in complex analysis
  • Explore the derivation of the Third (Cauchy's) beta integral
  • Read Vadim Kuznetsov's "SPECIAL FUNCTIONS AND THEIR SYMMETRIES" for deeper insights
USEFUL FOR

Mathematicians, students of complex analysis, and researchers interested in advanced integral calculus and special functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
This is one of the most interesting integrals I've ever seen

$$\frac{1}{2\pi i }\int^{c+i\infty}_{c-i\infty}t^{-a} (1-t)^{-b-1}\, dt = \frac{1}{b\,\beta(a,b)}$$

Does anybody have any idea how to prove it ?
 
Physics news on Phys.org
ZaidAlyafey said:
This is one of the most interesting integrals I've ever seen

$$\frac{1}{2\pi i }\int^{c+i\infty}_{c-i\infty}t^{-a} (1-t)^{-b-1}\, dt = \frac{1}{b\,\beta(a,b)}$$

Does anybody have any idea how to prove it ?

Hi ZaidAlyafey, :)

Is \(a\) and/or \(b\) integers?
 
Sudharaka said:
Hi ZaidAlyafey, :)

Is \(a\) and/or \(b\) integers?

Hi, when first I saw this equality there didn't seem to be this restriction , but let us
assume for simplicity that a and b are integers.
 
I guess you are thinking about using residues in a way similar to the broomwich integral.
 
ZaidAlyafey said:
I guess you are thinking about using residues in a way similar to the broomwich integral.

Yeah, but I don't think I can find a way to get the required answer using that method. Where did you find this integral?
 
Sudharaka said:
Yeah, but I don't think I can find a way to get the required answer using that method. Where did you find this integral?

Well, after searching I got that which is called the Third(Cauchy's) beta integral :

$$\int^{\infty}_{-\infty}\frac{dt}{(1-it)^a(1+it)^b}= \frac{\pi 2^{2-a-b}\Gamma{(a+b-1)}}{\Gamma(a)\Gamma(b)}$$

Clearly our integral can be derived by doing a substitution , so this is a general formula
I found this in a paper SPECIAL FUNCTIONS AND THEIR SYMMETRIES by Vadim KUZNETSOV.
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K