MHB A very strange statement from Wolfram Alpha....

chisigma
Gold Member
MHB
Messages
1,627
Reaction score
0
The so called 'Moebious Function' is a discrete function defined as...

$$\mu(n)= \begin{cases} - 1 &\text{if n has an odd number of prime distinct fators} \\ 0 &\text{if n has one or more prime fractors with exponent greater than one}\\ 1 &\text{if n has an even number of prime distinct factors}\end{cases}\ (1)$$

Actually I'm spending some of my time around the [non discrete] function... $$\mu(x)= \sum_{n=1}^{\infty} \mu (n)\ x^{n}\ (2)$$

In any case is for $0 \le x < 1$ ...$$|\sum_{n=1}^{N} \mu (n)\ x^{n}| \le \sum_{n=1}^{N} x^{n}\ (3)$$

... I'm sure that for $0 \le x < 1$ the series (2) converges. It seems however not to be so obvious for 'Monster Wolfram'...

sum mu(n) x^n from 1 to infinity - Wolfram|Alpha

... according to that the convergence test fails because 'the ratio test in inconclusive'... I would be very happy if somebody clarifies mi ideas... Kind regards $\chi$ $\sigma$
 
Mathematics news on Phys.org
Well, the sum seems convergent to me as well . I ran it on Mathemaica on my PC and it still can not determine convergence .

I tried the following $$\sum_{k\geq 1} \frac{\mu(k)}{2^k } $$ still no response !
 
Today I have found the following 'explicit expression'...

$$\sum_{n=1}^{\infty} \mu(n)\ x^{n} = x - \sum_{a=2}^{\infty} x^{a} + \sum_{b=2}^{\infty} \sum_{a=2}^{\infty} x^ {a\ b} - \sum_{c=2}^{\infty} \sum_{b=2}^{\infty} \sum_{a=2}^{\infty} x^ {a\ b\ c} + \sum_{d=2}^{\infty} \sum_{c=2}^{\infty} \sum_{b=2}^{\infty} \sum_{a=2}^{\infty} x^ {a\ b\ c\ d} - ...\ (1)$$

No surprise about the fact that the amount of computation required overflows also the capability of 'Monster Wolfram' (Sweating) ...

Kind regards

$\chi$ $\sigma$
 
Today I decided to try a 'nice 'experiment'... I recovered from the cellar a very 'artifact', one of them first Pentium PC [improved after it was discovered that first examples failed in doing multiplications (Sadface)...] that I used about twenty year ago and conserve as 'souvenir' and used it to numerically compute some values of the function...

$$\mu (x) = \sum_{n=1}^{\infty} \mu(n)\ x^{n}\ (1)$$

The sum was interrupted after 4000 iteration and the range was $-.99 < x < .99$. The result is reported in the diagram...

http://www.123homepage.it/u/i72335019._szw380h285_.jpg.jfif

Clearly in this range we have 'good convergence' but an obvious question is: what does it happen in the range $-1 < x < -.99$ and $.99 < x < 1$?... The answer is not so easy and You can realize that considering that for x=1 we have...

$$\mu(1) = \lim_{n \rightarrow \infty} M (n)\ (2)$$

... where...

$$M(n) = \sum_{k=1}^{n} \mu(k)\ (3)$$

... is the so called 'Marten's function' , the behaviour of which for 'large' values of n is highly 'oscillatory' so that may be that the $\mu(x)$ in the range $.99 < x < 1$ crosses the zero infinite times (Sweating)... in any case I intend to do more 'investigations'...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
5
Views
2K
Replies
125
Views
19K
Replies
4
Views
2K
Replies
6
Views
1K
Replies
3
Views
3K
Back
Top