Micromass' big October challenge

  • Context: Undergrad 
  • Thread starter Thread starter micromass
  • Start date Start date
  • Tags Tags
    challenge micromass
Click For Summary

Discussion Overview

The thread presents a series of mathematical challenges for participants to solve, focusing on various topics including calculus, number theory, and combinatorics. The challenges are designed to encourage rigorous proofs and derivations, with specific rules governing acceptable solutions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • Participants are invited to propose new challenges for future iterations of the October challenge.
  • Rules stipulate that solutions must include full proofs, and prior knowledge of solutions disqualifies participants from contributing.
  • Advanced challenges include topics such as the trajectory of an object under centripetal force, properties of primitive recursive functions, and the behavior of sequences and limits.
  • Specific challenges involve proving properties of functions, analyzing the motion of vessels, and exploring combinatorial arrangements of numbers.
  • Several challenges have been solved by participants, with detailed conditions and proofs provided for each solution.

Areas of Agreement / Disagreement

Participants generally agree on the rules and structure of the challenges, but there are multiple competing views on the approaches to solving the advanced problems. The discussion remains unresolved as participants continue to explore different methods and proofs.

Contextual Notes

Some challenges may depend on specific mathematical definitions or assumptions that are not fully articulated in the thread. The complexity of the problems suggests that participants may have varying interpretations of the requirements for proofs.

Who May Find This Useful

Mathematicians, students, and enthusiasts interested in problem-solving, mathematical proofs, and advanced theoretical challenges may find this thread engaging.

  • #121
I think you've got the basic idea=the resultant of ## A +B ## and ## C+D ## which lies along their respective angle bisectors must be equal and opposite. One question I have for you that I'm not sure you answered completely: What if ## A+B ## and ## C+D ## lie in opposite directions, (along with the angle bisectors from these vectors), as is required, does it guarantee that the angle between ## A ## and ## B ## is the same as the angle between ## C ## and ## D ##? Let the angle between ## A ## and ## B ## be ## \theta_1 ##, and the angle between ## C ## and ## D ## be ## \theta_2 ## where ## \theta_1 \neq \theta_2 ##. Can we still have for that case ## A+B =-(C+D) ##? i.e. can we have |A+B|=|C+D|? Why or why not?
 
Mathematics news on Phys.org
  • #122
Charles Link said:
I think you've got the basic idea=the resultant of ## A +B ## and ## C+D ## which lies along their respective angle bisectors must be equal and opposite. One question I have for you that I'm not sure you answered completely: What if ## A+B ## and ## C+D ## lie in opposite directions, (along with the angle bisectors from these vectors), as is required, does it guarantee that the angle between ## A ## and ## B ## is the same as the angle between ## C ## and ## D ##? Let the angle between ## A ## and ## B ## be ## \theta_1 ##, and the angle between ## C ## and ## D ## be ## \theta_2 ## where ## \theta_1 \neq \theta_2 ##. Can we still have for that case ## A+B =-(C+D) ##? i.e. can we have |A+B|=|C+D|? Why or why not?

Yes, this is necessary. I mentioned that when the magnitudes of two opposite sides are altered together, the angles within each of the two pairs of numbers are increased/decreased by the same amount. Any other translation that would result in different angles is impossible. I edited my main proof to include a more in-depth explanation of this.
 
  • #123
Qualitatively speaking, "increasing the angle..affects the sum..." , your logic is basically correct, but can you express it mathematically?: i.e. Given ## |A|=|B|=1 ## with an angle ## \theta_1 ## between them, please compute the length of the vector sum ## |A+B | ##. The computation involves just a little trigonometry. Have you taken a course in trigonometry yet?
 
  • #124
Charles Link said:
Qualitatively speaking, "increasing the angle..affects the sum..." , your logic is basically correct, but can you express it mathematically?: i.e. Given ## |A|=|B|=1 ## with an angle ## \theta_1 ## between them, please compute the length of the vector sum ## |A+B | ##. The computation involves just a little trigonometry. Have you taken a course in trigonometry yet?

I think that would be ##\sqrt{(\cos\theta+1)^2+sin^2\theta}##, which can be simplified to ##\sqrt{2\cos\theta+2}##.
 
  • #125
EpidermalOblivion said:
I think that would be ##\sqrt{(\cos\theta+1)^2+sin^2\theta}##, which can be simplified to ##\sqrt{2\cos\theta+2}##.
Yes, that is correct. And for the amplitudes ## |A+B| ## and ## |C+D| ## to be equal, what can you say about ## \theta_1 ## and ## \theta_2 ##? ... From what I can see, I think you have successfully solved it...Hopefully @mfb will concur.
 
  • #126
I agree.

They key element is the unique way to get a (non-zero) sum. With that, you can skip all the discussion of the rotations. Every group of 4 numbers will have pairs with opposite non-zero sums, and those opposite sums uniquely identify the elements, with the same angles for both pairs. Done.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
640
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 77 ·
3
Replies
77
Views
12K