- 5,962
- 3,148
I think you've got the basic idea=the resultant of ## A +B ## and ## C+D ## which lies along their respective angle bisectors must be equal and opposite. One question I have for you that I'm not sure you answered completely: What if ## A+B ## and ## C+D ## lie in opposite directions, (along with the angle bisectors from these vectors), as is required, does it guarantee that the angle between ## A ## and ## B ## is the same as the angle between ## C ## and ## D ##? Let the angle between ## A ## and ## B ## be ## \theta_1 ##, and the angle between ## C ## and ## D ## be ## \theta_2 ## where ## \theta_1 \neq \theta_2 ##. Can we still have for that case ## A+B =-(C+D) ##? i.e. can we have |A+B|=|C+D|? Why or why not?