Hello, I'm reading this book http://freescience.info/go.php?pagename=books&id=1041 about differential manifolds. In the appendix this book gives a proof for the inverse function theorem. It assumes that the Jacobian matrix [tex]Df_a[/tex] is invertible (where [itex]a[/itex] is a location where it is calculated), and then it says: "By an affine transformation [itex]x\mapsto Ax+b[/itex] we can assume that [itex]a=0[/itex] and [itex]Df_a=1[/itex]." Isn't this the same thing, as assuming that all invertible matrices are diagonalizable? And isn't that assumption wrong?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# About invertible and diagonalizable matrices

**Physics Forums | Science Articles, Homework Help, Discussion**