A About Universal enveloping algebra

HDB1
Messages
77
Reaction score
7

Please, I have a question about this:​

The Universal enveloping algebra of a finite dimensional Lie algebra is Noetherian.

How we can prove it? Please..
 
Physics news on Phys.org
Dear @fresh_42 , I am so sorry for bothering you, please, if you could hlep, i would appreciate it.. :heart: :heart:
 
HDB1 said:

Please, I have a question about this:​

The Universal enveloping algebra of a finite dimensional Lie algebra is Noetherian.

How we can prove it? Please..

A module that is also a vector space is Noetherian if and only if it is finite-dimensional. The universal enveloping algebra is both, a module, and a vector space. We must therefore show that the universal enveloping algebra of a finite-dimensional Lie algebra is finite-dimensional, too. This is the statement of the Poincaré-Birkhoff-Witt theorem, proven by Humphreys (GTM 9) in chapters 17.3 and 17.4., Corollary 17.3.C.
 
  • Like
Likes jedishrfu and HDB1
Thank you so much, @fresh_42 , please, why Universal enveloping algebra is module? PBW theorem gives a basis of Universal enveloping algebra, but please, why it is finite dimensional? please,

I thougt in general: lie lagebra is finite dimensioal, and its universal enveloping is infinite dimensional.

Thanks in advance, :heart:
 
HDB1 said:
Thank you so much, @fresh_42 , please, why Universal enveloping algebra is module? PBW theorem gives a basis of Universal enveloping algebra, but please, why it is finite dimensional? please,

I thougt in general: lie lagebra is finite dimensioal, and its universal enveloping is infinite dimensional.

Thanks in advance, :heart:
It is a ##\mathbb{K}##-vector space and as such a ##\mathbb{K}##-module. We say vector space and finite-dimensional in case the scalars are from a field, and we say module and finitely generated in case the scalars are from a ring, e.g. the integers.

The question is: How do you define Noetherian? It is usually defined for rings and modules. E.g. a module is Noetherian if it is finitely generated. But finitely generated modules over a ring that is a field like in our case, are automatically finite-dimensional vector spaces. And PBW makes sure that the universal enveloping algebra of a finite-dimensional Lie algebra is again finite-dimensional.
 
Last edited:
  • Like
  • Love
Likes HDB1 and jedishrfu
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
19
Views
3K
Replies
4
Views
3K
Replies
19
Views
3K
Replies
15
Views
3K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
0
Views
3K
Replies
2
Views
3K
Back
Top