A About Universal enveloping algebra

HDB1
Messages
77
Reaction score
7

Please, I have a question about this:​

The Universal enveloping algebra of a finite dimensional Lie algebra is Noetherian.

How we can prove it? Please..
 
Physics news on Phys.org
Dear @fresh_42 , I am so sorry for bothering you, please, if you could hlep, i would appreciate it.. :heart: :heart:
 
HDB1 said:

Please, I have a question about this:​

The Universal enveloping algebra of a finite dimensional Lie algebra is Noetherian.

How we can prove it? Please..

A module that is also a vector space is Noetherian if and only if it is finite-dimensional. The universal enveloping algebra is both, a module, and a vector space. We must therefore show that the universal enveloping algebra of a finite-dimensional Lie algebra is finite-dimensional, too. This is the statement of the Poincaré-Birkhoff-Witt theorem, proven by Humphreys (GTM 9) in chapters 17.3 and 17.4., Corollary 17.3.C.
 
  • Like
Likes jedishrfu and HDB1
Thank you so much, @fresh_42 , please, why Universal enveloping algebra is module? PBW theorem gives a basis of Universal enveloping algebra, but please, why it is finite dimensional? please,

I thougt in general: lie lagebra is finite dimensioal, and its universal enveloping is infinite dimensional.

Thanks in advance, :heart:
 
HDB1 said:
Thank you so much, @fresh_42 , please, why Universal enveloping algebra is module? PBW theorem gives a basis of Universal enveloping algebra, but please, why it is finite dimensional? please,

I thougt in general: lie lagebra is finite dimensioal, and its universal enveloping is infinite dimensional.

Thanks in advance, :heart:
It is a ##\mathbb{K}##-vector space and as such a ##\mathbb{K}##-module. We say vector space and finite-dimensional in case the scalars are from a field, and we say module and finitely generated in case the scalars are from a ring, e.g. the integers.

The question is: How do you define Noetherian? It is usually defined for rings and modules. E.g. a module is Noetherian if it is finitely generated. But finitely generated modules over a ring that is a field like in our case, are automatically finite-dimensional vector spaces. And PBW makes sure that the universal enveloping algebra of a finite-dimensional Lie algebra is again finite-dimensional.
 
Last edited:
  • Like
  • Love
Likes HDB1 and jedishrfu
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
19
Views
3K
Replies
4
Views
3K
Replies
19
Views
3K
Replies
15
Views
3K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
0
Views
3K
Replies
2
Views
3K
Back
Top