- #1
- 2,566
- 4
Let [itex]z : \mathbb{N}^2 \to \mathbb{C}[/itex]. Suppose that:
1) for all natural n, [itex]\sum _{j \in \mathbb{N}}z(n,j)[/itex] converges absolutely.
2) for all natural j, [itex]\sum _{n \in \mathbb{N}}z(n,j)[/itex] converges absolutely.
3) [itex]\sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely.
Can we conclude that
4) [itex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely as well, with
[tex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) = \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/tex]
1) for all natural n, [itex]\sum _{j \in \mathbb{N}}z(n,j)[/itex] converges absolutely.
2) for all natural j, [itex]\sum _{n \in \mathbb{N}}z(n,j)[/itex] converges absolutely.
3) [itex]\sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely.
Can we conclude that
4) [itex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right )[/itex] converges absolutely as well, with
[tex]\sum _{j \in \mathbb{N}}\left (\sum _{n \in \mathbb{N}} z(n,j)\right ) = \sum _{n \in \mathbb{N}}\left (\sum _{j \in \mathbb{N}} z(n,j)\right )[/tex]
Last edited: