Absolute Value Function Challenge

Click For Summary
SUMMARY

The discussion centers on solving the absolute value function equation $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$. Participants shared methods for tackling the problem, highlighting a trick for determining the function's behavior across different intervals. The solutions derived include $x=3-\sqrt{58}$ for $x<0$ and $x=3+4\sqrt{2}$ for $x>0$. The approach involved graphing the function and solving simultaneous equations for different cases.

PREREQUISITES
  • Understanding of absolute value functions
  • Familiarity with quadratic equations
  • Graphing techniques for functions
  • Knowledge of solving simultaneous equations
NEXT STEPS
  • Explore advanced techniques in solving absolute value equations
  • Learn about graphing quadratic functions and their transformations
  • Study methods for solving simultaneous equations involving absolute values
  • Investigate the properties of piecewise functions
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic problem-solving techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = x^2 – 2x – 48$.
 
Mathematics news on Phys.org
My sol.
Since the LHS is greater than or equal to zero, this means $x^2-2x-48\ge 0$ so $x\le -6$ and $x \ge 8$. On this interval $x^2-x-1 >0$, $x^2-x-1-3 > 0$ and so on until $x^2-x-1-3-5-7-9-11 > $. Thus we are left with

$ |x^2 - x - 1- 3 - 5- 7 - 9- 11 -13| = x^2-2x-48$

or

$(x^2-x-49)^2 = (x^2-2x-48)^2$

which we can solve giving $x = 1$, $x = 7.754462862$ and $x = -6.254462862$. The third is the desired solution.
 
Thanks for participating, Jester and thanks also showing me this quick way to crack it!

I feel so dumb and silly now because for an hour that I spent today to work on this particular problem, I didn't see the "trick" that you used in your solution and cracked it using one stupidest way!(Angry)
 
Hi MHB,

I've "improved" the original problem to make it more "difficult" and I sure hope you enjoy solving this modified version of the problem.

Solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$.
 
My solution to solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$ is shown below:

View attachment 1254

I first tried some simpler function and drew the graph of $y=|||| x^2 – x –1 |–3|–5|–7| $ on a paper and then I came to realize that there was a trick to find each formula of the function defined at specific intervals and next, I applied it to our case here and has labeled the formulas for the last three functions as shown in the diagram above.

We see that we've two cases to consider and to find the solution where $x<0$ for case A, we solve the equation $y=x^2 – x –1 –3–5–7–9– 11+13$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=3-\sqrt{58}\approx -4.616$$

and observe that $$-5.52<x=3-\sqrt{58}\approx -4.616<-4.52$$ and this is the solution that we're after.

Now, for case B, we solve the equation $y=-(x^2 – x –1 –3–5–7–9– 11-13)$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=\frac{4-\sqrt{379}}{3}\approx-5.515$$

and observe that $$-6.517<x=-5.515 \not<-5.52$$ and thus this answer can be discarded.

And to determine the $x$ value when $x>0$, we solve the equations $y=x^2 – x –1 –3–5–7–9– 11-13$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=3+4\sqrt{2}$$

Thus, the answers for solving $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$ are $$x=3-\sqrt{58}$$ and $$x=3+4\sqrt{2}$$.
 

Attachments

  • Absolute Value Function Challenge.JPG
    Absolute Value Function Challenge.JPG
    64.8 KB · Views: 88

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K