MHB Absolute Value Function Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = x^2 – 2x – 48$.
 
Mathematics news on Phys.org
My sol.
Since the LHS is greater than or equal to zero, this means $x^2-2x-48\ge 0$ so $x\le -6$ and $x \ge 8$. On this interval $x^2-x-1 >0$, $x^2-x-1-3 > 0$ and so on until $x^2-x-1-3-5-7-9-11 > $. Thus we are left with

$ |x^2 - x - 1- 3 - 5- 7 - 9- 11 -13| = x^2-2x-48$

or

$(x^2-x-49)^2 = (x^2-2x-48)^2$

which we can solve giving $x = 1$, $x = 7.754462862$ and $x = -6.254462862$. The third is the desired solution.
 
Thanks for participating, Jester and thanks also showing me this quick way to crack it!

I feel so dumb and silly now because for an hour that I spent today to work on this particular problem, I didn't see the "trick" that you used in your solution and cracked it using one stupidest way!(Angry)
 
Hi MHB,

I've "improved" the original problem to make it more "difficult" and I sure hope you enjoy solving this modified version of the problem.

Solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$.
 
My solution to solve $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$ is shown below:

View attachment 1254

I first tried some simpler function and drew the graph of $y=|||| x^2 – x –1 |–3|–5|–7| $ on a paper and then I came to realize that there was a trick to find each formula of the function defined at specific intervals and next, I applied it to our case here and has labeled the formulas for the last three functions as shown in the diagram above.

We see that we've two cases to consider and to find the solution where $x<0$ for case A, we solve the equation $y=x^2 – x –1 –3–5–7–9– 11+13$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=3-\sqrt{58}\approx -4.616$$

and observe that $$-5.52<x=3-\sqrt{58}\approx -4.616<-4.52$$ and this is the solution that we're after.

Now, for case B, we solve the equation $y=-(x^2 – x –1 –3–5–7–9– 11-13)$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=\frac{4-\sqrt{379}}{3}\approx-5.515$$

and observe that $$-6.517<x=-5.515 \not<-5.52$$ and thus this answer can be discarded.

And to determine the $x$ value when $x>0$, we solve the equations $y=x^2 – x –1 –3–5–7–9– 11-13$ and $y=(2x+9)(x-8)$ simultaneously and get

$$x=3+4\sqrt{2}$$

Thus, the answers for solving $||||||| x^2 – x –1 |–3|–5|–7|–9| – 11|–13| = (2x+9)(x-8)$ are $$x=3-\sqrt{58}$$ and $$x=3+4\sqrt{2}$$.
 

Attachments

  • Absolute Value Function Challenge.JPG
    Absolute Value Function Challenge.JPG
    64.8 KB · Views: 74
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top