MHB ACT Problem: Sum Of Even Integers

816318
Messages
14
Reaction score
0
What is the sum of all the even integers between 1 and 101? Is there an easier way besides using the formula: (B-A+1)(B+A)/2?

It just takes too much time.
 
Mathematics news on Phys.org
Re: ACT problem

It's an arithmetic series with first term 2 and fifty terms, so it can easily be calculated as

$$\frac{n}{2}[2a_1+(n-1)d]$$

with $n$ (the number of terms) = $50$, $a_1$ (the first term) = $2$ and $d$ (the common difference) = $2$.

Alternatively, use

$$\frac{n(a_1+a_n)}{2}$$

with $a_n$ being the last term ($100$).
 
Re: ACT problem

Another approach would be:

$$S=2\sum_{k=1}^{50}(k)=50\cdot51$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top