- #1
acesuv
- 63
- 0
(disregard my improvised science lingo)
so like... a radio wave has a rather macroscopic wavelength. the photon is depicted as traveling back and forth in unison with the wavelength. I am having trouble understanding why the photon can't hit you from the "side". if the photon is traveling a zig-zaged path (zig zags due to wavelength), then is it possible for the photon to actually hit you from the "side"? if you get hit by a radiowave when its coming back down from its wavelength, it has some velocity in a direction which the light isn't actually travelling. I am thinking uncertainty principals somehow negate this? please help thanks
so like... a radio wave has a rather macroscopic wavelength. the photon is depicted as traveling back and forth in unison with the wavelength. I am having trouble understanding why the photon can't hit you from the "side". if the photon is traveling a zig-zaged path (zig zags due to wavelength), then is it possible for the photon to actually hit you from the "side"? if you get hit by a radiowave when its coming back down from its wavelength, it has some velocity in a direction which the light isn't actually travelling. I am thinking uncertainty principals somehow negate this? please help thanks