Acute angle of right triangles

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Angle Triangles
Click For Summary
SUMMARY

The discussion centers on the acute angles of right triangles formed by a rectangle inscribed in a semicircle with a radius of 1. It is established that while the hypotenuse of each right triangle equals 1, the acute angles are not universally 45 degrees; they vary depending on the rectangle's height. The area of the rectangle is 1, leading to the relationship between height and width, expressed as \(x \cdot 2\sqrt{1-x^2} = 1\). Trigonometric methods can also be applied, confirming that the acute angles can indeed be 45 degrees under specific conditions.

PREREQUISITES
  • Understanding of right triangles and their properties
  • Familiarity with Pythagorean Theorem
  • Basic knowledge of trigonometric functions, specifically sine and cosine
  • Concept of inscribed shapes in circles
NEXT STEPS
  • Explore the properties of inscribed angles in circles
  • Study the application of Pythagorean Theorem in various geometric contexts
  • Learn about the relationship between sine, cosine, and area in trigonometric identities
  • Investigate the implications of varying rectangle dimensions on triangle angles
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry and geometric properties of shapes.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a rectangle inside a semicircle with radius $1$ :

View attachment 9703

From the midpoint of the one side we draw a line to the opposite vertices and one line to the opposite edge.

View attachment 9704

Are the acute angles of the right triangles all equal to $45^{\circ}$ ? (Wondering)

All four triangles are similar, aren't they? We have that the hypotenuse of each right triangle is equal to $1$, since it is equal to the radius of the circle.
I am stuck right now about the angles. (Wondering)
 

Attachments

  • rechteck.JPG
    rechteck.JPG
    3.5 KB · Views: 127
  • triangles.JPG
    triangles.JPG
    4.3 KB · Views: 122
Mathematics news on Phys.org
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.
 
HallsofIvy said:
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.

In this case the resulting smaller rectangles look like squares and that's why maybe I got confused. (Doh)

So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right? (Wondering)

It is better to do the following:

View attachment 9705

Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$. Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.
 

Attachments

  • height.JPG
    height.JPG
    3.5 KB · Views: 137
Last edited by a moderator:
mathmari said:
So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right?

Hey mathmari!

We can do it with trigonometry as well.
The width of the rectangle is $2\cos\phi$ and the height is $\sin\phi$, isn't it? (Thinking)
So the area is:
$$2\cos\phi \cdot \sin\phi = \sin(2\phi) =1\implies \phi=\frac\pi 4$$

mathmari said:
Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$.

Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.

Yep. That works as well. (Nod)
 
Thanks a lot! 😇
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
89K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K