MHB Adam's question via email about Laplace Transforms

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following IVP using Laplace Transforms:
$\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t} + 11\,y = 3\,t, \quad y\left( 0 \right) = 5$

Take the Laplace Transform of the equation:

$\displaystyle \begin{align*} s\,Y\left( s \right) - y\left( 0 \right) + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
s\,Y\left( s \right) - 5 + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
\left( s + 11 \right) Y\left( s \right) &= \frac{3}{s^2} + 5 \\
Y\left( s \right) &= \frac{3}{s^2 \,\left( s + 11 \right) } + \frac{5}{s + 11} \end{align*}$

Apply Partial Fractions:

$\displaystyle \begin{align*}
\frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 11} &\equiv \frac{3}{s^2 \,\left( s + 11 \right) } \\
A\,s\left( s + 11 \right) + B \left( s + 11 \right) + C\,s^2 &\equiv 3
\end{align*}$

Let $\displaystyle s = 0 \implies 11\,B = 3 \implies B = \frac{3}{11}$

Let $\displaystyle s = -11 \implies 121\,C = 3 \implies C = \frac{3}{121}$

Then $\displaystyle A\,s\left( s + 11 \right) + \frac{3}{11} \left( s + 11 \right) + \frac{3}{121}\,s^2 \equiv 3$

Let $\displaystyle s = 1$

$\displaystyle \begin{align*}
12\,A + \frac{36}{11} + \frac{3}{121} &= 3 \\
12\,A + \frac{396}{121} + \frac{3}{121} &= \frac{33}{121} \\
12\,A &= -\frac{366}{121} \\
A &= -\frac{61}{242}
\end{align*}$

So

$\displaystyle \begin{align*}
Y\left( s \right) &= -\frac{61}{242}\left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{3}{121} \left( \frac{1}{s + 11} \right) + 5 \left( \frac{1}{s + 11 } \right) \\
Y\left( s \right) &= -\frac{61}{242} \left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{608}{121} \left( \frac{1}{s + 11} \right) \\
\\
y\left( t \right) &= -\frac{61}{242} + \frac{3}{11}\,t + \frac{608}{121}\,\mathrm{e}^{-11\,t}
\end{align*}$
 
Mathematics news on Phys.org
Let me, yet again, state my dislike for the "Laplace Transform Method"! And, in fact, Prove It made a slight arithmetic error
(easy to do with something as complicated as "Laplace Transform")
that resulted in an incorrect answer:
if y(t)= 61/242+ (3/11)t+ (608/121)e^{-11t} then
y'(t)= 3/11- (608/11)e^{-11t}
11y= 61/22+ 3t+ (608/11)e^{-11t}

so y'(t)+ 11t= 6/22+ 61/22+ 3t= 67/22+ 3t, not "3t".

It is far easier just to recognize that this is a linear differential equation with constant coefficients. Its "characteristic equation" is r+ 11= 0 so r= -11. The general solution to the associated homogeneous equation is y(t)= Ce{-11t} where C can be any constant.

Since the "non-homogeous" part is a linear polynomial, 3t, we look for a solution to the entire equation of the form y(t)= At+ B, for constants A and B. Then y'= A so the equation becomes A+ 11(At+ B)= 11At+ A+ 11B= 3t. In order for that to be true for all t, we must have both 11A= 3 and A+ 11B= 0. So A= 3/11 and then 3/11+ 11B= 0. B= -3/121.

The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.<br /> <br /> The solution is <div style="text-align: left"><span style="font-family: 'Verdana'">y(t)= (602/121)e^{-11t}+ (3/11)t- 3/121.<br /> <br /> Check: y&amp;#039;(t)= -(602/11)e^{-11t}+ 3/11 while 11y(t)= (602/11)e^{-11t}+ 3t- 3/11<br /> <br /> y&amp;#039;(t)+ 11t= 3t.<br /> </span>&#8203;</div>
 
Last edited by a moderator:
HallsofIvy said:
Let me, yet again, state my dislike for the "Laplace Transform Method"! And, in fact, Prove It made a slight arithmetic error
(easy to do with something as complicated as "Laplace Transform")
that resulted in an incorrect answer:
if y(t)= 61/242+ (3/11)t+ (608/121)e^{-11t} then
y&#039;(t)= 3/11- (608/11)e^{-11t}
11y= 61/22+ 3t+ (608/11)e^{-11t}

so y&#039;(t)+ 11t= 6/22+ 61/22+ 3t= 67/22+ 3t, not "3t".

It is far easier just to recognize that this is a linear differential equation with constant coefficients. Its "characteristic equation" is r+ 11= 0 so r= -11. The general solution to the associated homogeneous equation is y(t)= Ce{-11t} where C can be any constant.

Since the "non-homogeous" part is a linear polynomial, 3t, we look for a solution to the entire equation of the form y(t)= At+ B, for constants A and B. Then y'= A so the equation becomes A+ 11(At+ B)= 11At+ A+ 11B= 3t. In order for that to be true for all t, we must have both 11A= 3 and A+ 11B= 0. So A= 3/11 and then 3/11+ 11B= 0. B= -3/121.

The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.<br /> <br /> The solution is <div style="text-align: left"><span style="font-family: 'Verdana'">y(t)= (602/121)e^{-11t}+ (3/11)t- 3/121.<br /> <br /> Check: y&amp;#039;(t)= -(602/11)e^{-11t}+ 3/11 while 11y(t)= (602/11)e^{-11t}+ 3t- 3/11<br /> <br /> y&amp;#039;(t)+ 11t= 3t.<br /> </span>&#8203;</div>
<span style="font-family: 'Verdana'"><br /> <br /> Thanks for pointing out my error Hallsofivy. Adam is one of my students, and the topic they are learning is Laplace Transforms, so he will have to use that method.</span>
 
HallsofIvy said:
The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.
<br /> <br /> You also have an arithmetic error. When $\displaystyle t = 5$ you end up with $\displaystyle 5 = C - \frac{3}{121} \implies C = 5 + \frac{3}{121} = \frac{608}{121}$.<br /> <br /> I also see where my mistake was in the initial Laplace Transform. The easiest way to evaluate A is to look at the coefficient of $\displaystyle s^2 $, which gives<br /> <br /> $\displaystyle A + \frac{3}{121} = 0 \implies A = -\frac{3}{121} $.<br /> <br /> Thus<br /> <br /> $\displaystyle \begin{align*}<br /> Y\left( s \right) &amp;= -\frac{3}{121}\left( \frac{1}{s} \right) + \frac{3}{11}\left( \frac{1}{s^2} \right) + \frac{3}{121} \left( \frac{1}{s + 11} \right) + 5 \left( \frac{1}{s + 11 } \right) \\<br /> &amp;= -\frac{3}{121} \left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{608}{121} \left( \frac{1}{s + 11 } \right) \\<br /> \\<br /> y\left( t \right) &amp;= -\frac{3}{121} + \frac{3}{11}\,t + \frac{608}{121}\,\mathrm{e}^{-11\,t}<br /> \end{align*}$<br /> <br /> and this is definitely correct.
 
Argh! Arithmetic! I never was any good at that!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top