Adam's question via email about Laplace Transforms

Click For Summary

Discussion Overview

The discussion centers around solving an initial value problem (IVP) using Laplace Transforms, specifically the equation $\frac{\mathrm{d}y}{\mathrm{d}t} + 11\,y = 3\,t$ with the initial condition $y(0) = 5$. Participants explore various methods, including Laplace Transforms and alternative approaches, while addressing potential errors in calculations.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a solution using Laplace Transforms, detailing the steps taken to arrive at $Y(s)$ and subsequently $y(t)$.
  • Another participant expresses a dislike for the Laplace Transform method and claims that an arithmetic error was made in the solution, leading to an incorrect answer. They propose an alternative method based on recognizing the linear differential equation's characteristic equation.
  • Further discussion includes the identification of constants in the general solution and the need to satisfy the initial condition, with some participants correcting each other's arithmetic and assumptions.
  • One participant acknowledges their arithmetic error and attempts to clarify the correct values for constants in the solution derived from the Laplace Transform method.
  • Another participant reinforces the correctness of their derived solution while pointing out errors in previous calculations, particularly regarding the constant $C$.

Areas of Agreement / Disagreement

Participants express disagreement regarding the correctness of the solutions derived from the Laplace Transform method, with some asserting errors while others defend their calculations. The discussion remains unresolved as multiple competing views are presented.

Contextual Notes

There are unresolved arithmetic errors and assumptions regarding the constants in the solutions. The discussion reflects varying levels of comfort with the Laplace Transform method and alternative approaches to solving the differential equation.

Who May Find This Useful

Students and educators interested in differential equations, particularly those learning about Laplace Transforms and alternative solution methods.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following IVP using Laplace Transforms:
$\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t} + 11\,y = 3\,t, \quad y\left( 0 \right) = 5$

Take the Laplace Transform of the equation:

$\displaystyle \begin{align*} s\,Y\left( s \right) - y\left( 0 \right) + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
s\,Y\left( s \right) - 5 + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
\left( s + 11 \right) Y\left( s \right) &= \frac{3}{s^2} + 5 \\
Y\left( s \right) &= \frac{3}{s^2 \,\left( s + 11 \right) } + \frac{5}{s + 11} \end{align*}$

Apply Partial Fractions:

$\displaystyle \begin{align*}
\frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 11} &\equiv \frac{3}{s^2 \,\left( s + 11 \right) } \\
A\,s\left( s + 11 \right) + B \left( s + 11 \right) + C\,s^2 &\equiv 3
\end{align*}$

Let $\displaystyle s = 0 \implies 11\,B = 3 \implies B = \frac{3}{11}$

Let $\displaystyle s = -11 \implies 121\,C = 3 \implies C = \frac{3}{121}$

Then $\displaystyle A\,s\left( s + 11 \right) + \frac{3}{11} \left( s + 11 \right) + \frac{3}{121}\,s^2 \equiv 3$

Let $\displaystyle s = 1$

$\displaystyle \begin{align*}
12\,A + \frac{36}{11} + \frac{3}{121} &= 3 \\
12\,A + \frac{396}{121} + \frac{3}{121} &= \frac{33}{121} \\
12\,A &= -\frac{366}{121} \\
A &= -\frac{61}{242}
\end{align*}$

So

$\displaystyle \begin{align*}
Y\left( s \right) &= -\frac{61}{242}\left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{3}{121} \left( \frac{1}{s + 11} \right) + 5 \left( \frac{1}{s + 11 } \right) \\
Y\left( s \right) &= -\frac{61}{242} \left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{608}{121} \left( \frac{1}{s + 11} \right) \\
\\
y\left( t \right) &= -\frac{61}{242} + \frac{3}{11}\,t + \frac{608}{121}\,\mathrm{e}^{-11\,t}
\end{align*}$
 
Physics news on Phys.org
Let me, yet again, state my dislike for the "Laplace Transform Method"! And, in fact, Prove It made a slight arithmetic error
(easy to do with something as complicated as "Laplace Transform")
that resulted in an incorrect answer:
if y(t)= 61/242+ (3/11)t+ (608/121)e^{-11t} then
y'(t)= 3/11- (608/11)e^{-11t}
11y= 61/22+ 3t+ (608/11)e^{-11t}

so y'(t)+ 11t= 6/22+ 61/22+ 3t= 67/22+ 3t, not "3t".

It is far easier just to recognize that this is a linear differential equation with constant coefficients. Its "characteristic equation" is r+ 11= 0 so r= -11. The general solution to the associated homogeneous equation is y(t)= Ce{-11t} where C can be any constant.

Since the "non-homogeous" part is a linear polynomial, 3t, we look for a solution to the entire equation of the form y(t)= At+ B, for constants A and B. Then y'= A so the equation becomes A+ 11(At+ B)= 11At+ A+ 11B= 3t. In order for that to be true for all t, we must have both 11A= 3 and A+ 11B= 0. So A= 3/11 and then 3/11+ 11B= 0. B= -3/121.

The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.<br /> <br /> The solution is <div style="text-align: left"><span style="font-family: 'Verdana'">y(t)= (602/121)e^{-11t}+ (3/11)t- 3/121.<br /> <br /> Check: y&amp;#039;(t)= -(602/11)e^{-11t}+ 3/11 while 11y(t)= (602/11)e^{-11t}+ 3t- 3/11<br /> <br /> y&amp;#039;(t)+ 11t= 3t.<br /> </span>&#8203;</div>
 
Last edited by a moderator:
HallsofIvy said:
Let me, yet again, state my dislike for the "Laplace Transform Method"! And, in fact, Prove It made a slight arithmetic error
(easy to do with something as complicated as "Laplace Transform")
that resulted in an incorrect answer:
if y(t)= 61/242+ (3/11)t+ (608/121)e^{-11t} then
y&#039;(t)= 3/11- (608/11)e^{-11t}
11y= 61/22+ 3t+ (608/11)e^{-11t}

so y&#039;(t)+ 11t= 6/22+ 61/22+ 3t= 67/22+ 3t, not "3t".

It is far easier just to recognize that this is a linear differential equation with constant coefficients. Its "characteristic equation" is r+ 11= 0 so r= -11. The general solution to the associated homogeneous equation is y(t)= Ce{-11t} where C can be any constant.

Since the "non-homogeous" part is a linear polynomial, 3t, we look for a solution to the entire equation of the form y(t)= At+ B, for constants A and B. Then y'= A so the equation becomes A+ 11(At+ B)= 11At+ A+ 11B= 3t. In order for that to be true for all t, we must have both 11A= 3 and A+ 11B= 0. So A= 3/11 and then 3/11+ 11B= 0. B= -3/121.

The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.<br /> <br /> The solution is <div style="text-align: left"><span style="font-family: 'Verdana'">y(t)= (602/121)e^{-11t}+ (3/11)t- 3/121.<br /> <br /> Check: y&amp;#039;(t)= -(602/11)e^{-11t}+ 3/11 while 11y(t)= (602/11)e^{-11t}+ 3t- 3/11<br /> <br /> y&amp;#039;(t)+ 11t= 3t.<br /> </span>&#8203;</div>
<span style="font-family: 'Verdana'"><br /> <br /> Thanks for pointing out my error Hallsofivy. Adam is one of my students, and the topic they are learning is Laplace Transforms, so he will have to use that method.</span>
 
HallsofIvy said:
The general solution to the entire equation is y(t)= Ce^{-11t}+ (3/11)t- 3/121. Since we want y(0)= 5, we must have 5= C+ 3/121 so C= 5- 3/121= 605/121- 3/121= 602/121.
<br /> <br /> You also have an arithmetic error. When $\displaystyle t = 5$ you end up with $\displaystyle 5 = C - \frac{3}{121} \implies C = 5 + \frac{3}{121} = \frac{608}{121}$.<br /> <br /> I also see where my mistake was in the initial Laplace Transform. The easiest way to evaluate A is to look at the coefficient of $\displaystyle s^2 $, which gives<br /> <br /> $\displaystyle A + \frac{3}{121} = 0 \implies A = -\frac{3}{121} $.<br /> <br /> Thus<br /> <br /> $\displaystyle \begin{align*}<br /> Y\left( s \right) &amp;= -\frac{3}{121}\left( \frac{1}{s} \right) + \frac{3}{11}\left( \frac{1}{s^2} \right) + \frac{3}{121} \left( \frac{1}{s + 11} \right) + 5 \left( \frac{1}{s + 11 } \right) \\<br /> &amp;= -\frac{3}{121} \left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{608}{121} \left( \frac{1}{s + 11 } \right) \\<br /> \\<br /> y\left( t \right) &amp;= -\frac{3}{121} + \frac{3}{11}\,t + \frac{608}{121}\,\mathrm{e}^{-11\,t}<br /> \end{align*}$<br /> <br /> and this is definitely correct.
 
Argh! Arithmetic! I never was any good at that!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
2
Views
7K
  • · Replies 2 ·
Replies
2
Views
6K