Henry's question via email about an Inverse Laplace Transform

In summary, the conversation is about using a sneaky completion of the square to solve a problem involving partial fractions. The conversation also touches on using the Inverse Laplace Transform to solve the problem. The person speaking is confused about the mention of Collin's and Henry, and the other individuals mentioned are the speaker's students who reach out for help and are directed to this conversation.
  • #1
Prove It
Gold Member
MHB
1,465
24
View attachment 5832

It's not entirely obvious what to do with this question, as the denominator does not easily factorise. However, if we realize that $\displaystyle \begin{align*} s^4 + 40\,000 = \left( s^2 \right) ^2 + 200^2 \end{align*}$ it's possible to do a sneaky completion of the square...

$\displaystyle \begin{align*} \left( s^2 \right) ^2 + 200^2 &= \left( s^2 \right) ^2 + 400\,s^2 + 200^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - \left( 20\,s \right) ^2 \\ &= \left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) \end{align*}$

and thus it's now possible to perform partial fractions

$\displaystyle \begin{align*} \frac{A\,s + B}{s^2 - 20\,s + 200 } + \frac{C\,s + D}{s^2 + 20\,s + 200} &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \\ \left( A\,s + B \right) \left( s^2 + 20\,s + 200 \right) + \left( C\,s + D \right) \left( s^2 - 20\,s + 200 \right) &\equiv s^2 + 200 \\ \left( A + C \right) \,s ^3 + \left( 20\,A + B - 20\,C + D \right) \, s^2 + \left( 200\,A + 20\,B + 200\,C - 20\,D \right) \, s + 200\,\left( B + D \right) &\equiv s^2 + 200 \end{align*}$

so it can be seen that $\displaystyle \begin{align*} A + C = 0 , \, \, 20\,A + B - 20\,C + D = 1 , \, \, 200\,A + 20\,B + 200\,C - 20\,D = 0 \textrm{ and } B+ D = 1 \end{align*}$, so solving the system gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 20 & 1 & -20 & \phantom{-}1 & 1 \\ 200 & 20 & \phantom{-}200 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R2 - 20R1 to R2 and R3 - 200R1 to R3 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 0 & 1 & -40 & \phantom{-}1 & 1 \\ 0 & 20 & \phantom{-}0 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R3 - 20R2 to R3 and R4 - R2 to R4 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 \\ 0 & 1 & -40 & \phantom{-}1 & \phantom{-}1 \\ 0 & 0 & 800 & -40 & -20 \\ 0 & 0 & \phantom{-}40 & \phantom{-}0 & \phantom{-}0 \end{matrix} \right] \end{align*}$

and thus

$\displaystyle \begin{align*} 40\,C = 0 \implies C = 0 \end{align*}$

$\displaystyle \begin{align*} 800\,C - 40\,D = -20 \implies D = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} B - 40\,C + D = 1 \implies B = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} A + C = 0 \implies A = 0 \end{align*}$

So the partial fraction decomposition is

$\displaystyle \begin{align*} \frac{1}{2\,\left( s^2 - 20\,s + 200 \right) } + \frac{1}{2\,\left( s^2 + 20\,s + 200 \right) } &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \end{align*}$

So moving on to the Inverse Laplace Transform now...

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{-3\,\left( s^2 + 200 \right) }{ s^2 + 40\,000 } \right\} &= -\frac{3}{2}\,\mathcal{L}^{-1} \,\left\{ \frac{1}{s^2 - 20\,s + 200 } + \frac{1}{s^2 + 20\,s + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 - 20\,s + \left( -10 \right) ^2 - \left( -10 \right) ^2 + 200 } + \frac{1}{s^2 + 20\,s + 10^2 - 10^2 + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1} \, \left\{ \frac{1}{ \left( s - 10 \right) ^2 + 100 } + \frac{1}{ \left( s + 10 \right) ^2 + 100 } \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} - \frac{3}{2}\,\mathrm{e}^{-10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{-10\,t} \,\sin{ \left( 10\,t \right) } - \frac{3}{2}\,\mathrm{e}^{10\,t} \,\sin{ \left( 10\,t \right) } \\ &= -3\sin{ \left( 10\,t \right) } \left[ \frac{1}{2}\,\left( \mathrm{e}^{-10\,t} + \mathrm{e}^{10\,t} \right) \right] \\ &= -3\sin{ \left( 10\,t \right) } \cosh{ \left( 10\,t \right) } \end{align*}$
 

Attachments

  • inv laplace.png
    inv laplace.png
    5.1 KB · Views: 64
Mathematics news on Phys.org
  • #2
I'm confused. Who is Collin's and Henry and all the others?
 
  • #3
Joppy said:
I'm confused. Who is Collin's and Henry and all the others?

My students, they email me asking for help, and I direct them here...
 

1. What is an Inverse Laplace Transform?

An Inverse Laplace Transform is a mathematical operation that takes a function from the Laplace domain to the time domain. It essentially "undoes" the Laplace Transform and allows us to find the original function.

2. Why would someone need to use an Inverse Laplace Transform?

The Inverse Laplace Transform is often used in engineering and physics to solve differential equations and analyze systems. It allows us to find the original function and understand the behavior of a system over time.

3. How do you perform an Inverse Laplace Transform?

To perform an Inverse Laplace Transform, you need to know the Laplace Transform of the function and then use a table or mathematical techniques to find the inverse transform. It can also be done using software or calculators.

4. What are the applications of Inverse Laplace Transform?

The Inverse Laplace Transform has numerous applications in engineering, physics, and other scientific fields. It is used to solve differential equations, analyze systems, and understand the behavior of complex systems over time.

5. Are there any limitations to using Inverse Laplace Transform?

While Inverse Laplace Transform is a powerful tool, it does have limitations. It can only be used for functions that have a Laplace Transform, and the inverse transform may not always exist. It also requires knowledge of advanced mathematical techniques and can be time-consuming to perform by hand.

Similar threads

Replies
4
Views
10K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
9K
Replies
1
Views
10K
Replies
0
Views
9K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
1
Views
9K
Back
Top