A Adiabatic theorem for a 3 level system

Click For Summary
In a 3-level quantum system with energy levels E1, E2, and E3, the discussion explores the applicability of the adiabatic approximation when the energy splitting between levels satisfies the condition ω12 << ωP << ω23. The user questions whether the coupling term f12(t) can be ignored due to the slow dynamics of the first two levels compared to the perturbation frequency ωP. They propose a simplified Hamiltonian that eliminates f12(t) while retaining f23(t) and f13(t). The conversation acknowledges that while this approach may overlook some transitions from level 1 to level 3 via level 2, it is a valid approximation for certain scenarios. Ultimately, the effectiveness of this approximation depends on the specific dynamics and interactions within the system.
Malamala
Messages
348
Reaction score
28
Hello! If I have a 2 level system, with the energy splitting between the 2 levels ##\omega_{12}## and an external perturbation characterized by a frequency ##\omega_P##, if ##\omega_{12}>>\omega_P## I can use the adiabatic approximation, and assume that the initial state of the system changes slowly in time while for ##\omega_{12}<<\omega_P## I can assume that the perturbation doesn't have any effect on the system (it averages out over the relevant time scales). I was wondering if I have a 3 level system with ##E_1<E_2<E_3## such that ##\omega_{12}<<\omega_P<<\omega_{23}##. In general, the Hamiltonian of the system would look like this:

$$
\begin{pmatrix}
E_1 & f_{12}(t) & f_{13}(t) \\
f_{12}^*(t) & E_2 & f_{23}(t) \\
f_{13}^*(t) & f_{23}^*(t) & E_3
\end{pmatrix}
$$

But using the intuition from the 2 level system case, can I ignore ##f_{12}(t)##, as the system of these 2 levels (1 and 2) moves on time scales much slower than ##\omega_P##, and assume that ##f_{23}(t)## and ##f_{13}(t)## move very slow and thus use the adiabatic approximation? In practice I would basically have:

$$
\begin{pmatrix}
E_1 & 0 & f_{13}(t) \\
0 & E_2 & f_{23}(t) \\
f_{13}^*(t) & f_{23}^*(t) & E_3
\end{pmatrix}
$$

Or in this case I would need to fully solve the SE, without being able to make any approximations? Thank you!
 
Physics news on Phys.org
Seems like a reasonable approach to me. This might miss some processes transiting from 1 to 3 via 2, but this is all about making approximations.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...