High School Advice to obtain the domain of compound functions

  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Domain Functions
Click For Summary
The discussion revolves around understanding the domain of the inverse secant function, sec^{-1} x, and how it relates to the cosine function. The domain is defined as the union of intervals (-∞, -1] and [1, ∞), along with specific ranges for the inverse function. The user seeks guidance on determining the domain and range of cos^{-1}(1/x) using only the known domains of arccos(x) and the reciprocal function. There is also a query about a potential typo regarding the reflection of the secant function in relation to its inverse. The thread concludes with a technical note about formatting issues encountered while posting formulas.
mcastillo356
Gold Member
Messages
649
Reaction score
353
TL;DR
I'm familiar to this ground, but the function composition I introduce is difficult for me
Hi PF

I have a quote from Spanish 6th edition of "Calculus", by Robert A. Adams, and some queries. I translate it this way:"The inverse of secondary trigonometric functions can easily be calculated with the reciprocal function. For example
DEFINITION 13 The inverse function of secant ##sec^{-1} x## (or ##\mbox{arcsec}x##)
$$sec^{-1}=cos^{-1}\left({\dfrac{1}{x}}\right)\quad for\;|x|\geq 1$$
The domain of ##\sec^{-1}## is the union of intervals ##(-\infty,-1]\cup{[1,\infty)}## and ##[0,\dfrac{\pi}{2})\cup{(\dfrac{\pi}{2},\pi)}##. The graph of ##y=sec^{-1}x## is shown in Figure 3.25(b)(*). Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##. Additionally
$$\sec(\sec^{-1}x)=\sec\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)
=\dfrac{1}{\cos\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)}=\dfrac{1}{\dfrac{1}{x}}=x\qquad{\mbox{for}\;|x|\geq 1}$$Up to now I've got to deal only with very easy compound functions. This quote represents a qualitative step forward. The domains and ranges are shown, but I would like to know: what if I had to do it by myself, if I was given only the identities, and had to manage to describe the domain and range of, suppose, the one at DEFINITION 13?

$$cos^{-1}\left({\dfrac{1}{x}}\right)$$

With no other help but the knowledge of the domain of ##y=\mbox{arcos}(x)##, ##(-1\leq x\leq 1)##, and ##\mathbb{R}\setminus{\{0\}}## for ##\dfrac{1}{x}##

As well, isn't there a mistake, a typo, at the sentence "Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##"? Shouldn't be "of the part of ##sec^{-1} x##"?.

(*)Attached image

Attempt: Pure speculation; don't know why, but I've come across this statement: domain shouldn't be the intersection of the domain of ##y=\cos x## and the domain of the inverse function of ##y=\dfrac{1}{x}##?
 

Attachments

  • geogebra-export (2).png
    geogebra-export (2).png
    23.7 KB · Views: 143
Last edited by a moderator:
Mathematics news on Phys.org
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
 
mcastillo356 said:
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
You have simple forgotten a single "#" somewhere early. That was all. I corrected it.
 
  • Love
Likes mcastillo356
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K