MHB Alex's question at Yahoo Answers regarding a mixing problem

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Mixing
Click For Summary
The discussion focuses on solving a linear equation related to a tank containing a mixture of water and chlorine. The problem involves determining the amount of chlorine in the tank over time as fresh water is added and the mixture is pumped out. The mathematical formulation includes rates of incoming and outgoing solutions, leading to a differential equation that models the chlorine concentration. The final solution expresses the amount of chlorine as a function of time, yielding a specific formula based on the initial conditions and rates provided. The solution is plotted for the relevant time domain, illustrating the decrease in chlorine concentration over time.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do I solve this linear equation problem?


A tank with a capacity of 1600 L is full of a mixture of water and chlorine with a concentration of 0.0125 g of chlorine per liter. In order to reduce the concentration of chlorine, fresh water is pumped into the tank at a rate of 16 L/s. The mixture is kept stirred and is pumped out at a rate of 40 L/s. Find the amount of chlorine in the tank as a function of time. (Let y be the amount of chlorine in grams and t be the time in seconds.)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Alex,

We want to determine the amount $y(t)$ in grams of chlorine present in the tank at time $t$ in seconds. So, let's begin with:

$$\text{time rate of change of chlorine = time rate of chlorine coming in minus time rate of chlorine going out}$$

$$\text{time rate of chlorine coming in=concentration of solution coming in times the time rate of volume coming in}$$

$$\text{time rate of chlorine going out=concentration of solution going out times the time rate of volume going out}$$

Let:

$$C_I$$ = the constant concentration of solution coming in.

$$R_I$$ - the constant rate of incoming solution.

$$C_O$$ = the variable concentration of solution going out.

$$R_O$$ - the constant rate of outgoing solution.

Hence, stated mathematically, we may write:

$$\frac{dy}{dt}=C_IR_I-C_OR_O$$

Concentration equals amount per volume, and the volume of solution is a function of $t$, let's call it $V(t)$. So, we have:

$$\frac{dy}{dt}=C_IR_I-\frac{y(t)}{V(t)}R_O$$

To find the volume of solution present in the tank at time $t$, consider the IVP:

$$\frac{dV}{dt}=R_I-R_O$$ where $$V(0)=V_0$$

Separating variables, and integrating, we have:

$$\int\,dV=\left(R_I-R_O \right)\int\,dt$$

$$V(t)=\left(R_I-R_O \right)t+C$$

Using the initial values, we may determine the parameter $C$:

$$V(0)=C=V_0$$

Hence:

$$V(t)=\left(R_I-R_O \right)t+V_0$$

Thus, we may now write:

$$\frac{dy}{dt}=C_IR_I-\frac{y(t)}{\left(R_I-R_O \right)t+V_0}R_O$$

Arranging the ODE in standard linear form, we may model the amount of chlorine present in the tank at time $t$ with the following IVP:

$$\frac{dy}{dt}+\frac{R_O}{\left(R_I-R_O \right)t+V_0}y(t)=C_IR_I$$ where $y(0)=y_0$

Computing the integrating factor, we find:

$$\mu(t)=e^{\int \frac{R_O}{\left(R_I-R_O \right)t+V_0}\,dt}=\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}$$

Multiplying the ODE by this integrating factor, we obtain:

$$\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}\frac{dy}{dt}+R_O\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}-1}y(t)=C_IR_I\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}$$

Observing that the left side of the equation is now the differentiation of the product $\mu(t)\cdot y(t)$, we may write:

$$\frac{d}{dt}\left(\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}\cdot y(t) \right)=C_IR_I\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}$$

Integrating with respect to $t$, we have:

$$\int\,d\left(\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}\cdot y(t) \right)=C_IR_I\int\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}\,dt$$

$$\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}}\cdot y(t)=\frac{C_IR_I}{R_I-R_O}\left(\left(R_I-R_O \right)t+V_0 \right)^{\frac{R_O}{R_I-R_O}+1}+C$$

Solving for $y(t)$ we find:

$$y(t)=\frac{C_IR_I}{R_I-R_O}\left(\left(R_I-R_O \right)t+V_0 \right)+C\left(\left(R_I-R_O \right)t+V_0 \right)^{-\frac{R_O}{R_I-R_O}}$$

Using the initial conditions, we may determine the parameter $C$:

$$y(0)=\frac{C_IR_I}{R_I-R_O}\left(V_0 \right)+C\left(V_0 \right)^{-\frac{R_O}{R_I-R_O}}=y_0$$

$$C=V_0^{\frac{R_O}{R_I-R_O}}\left(y_0-\frac{C_IR_IV_0}{R_I-R_O} \right)$$

Thus, the solution satisfying the IVP is:

$$y(t)=\frac{C_IR_I}{R_I-R_O}\left(\left(R_I-R_O \right)t+V_0 \right)+V_0^{\frac{R_O}{R_I-R_O}}\left(y_0-\frac{C_IR_IV_0}{R_I-R_O} \right)\left(\left(R_I-R_O \right)t+V_0 \right)^{-\frac{R_O}{R_I-R_O}}$$

$$y(t)=\frac{C_IR_I}{R_I-R_O}\left(\left(R_I-R_O \right)t+V_0 \right)+\left(y_0-\frac{C_IR_IV_0}{R_I-R_O} \right)\left(\frac{V_0}{\left(R_I-R_O \right)t+V_0} \right)^{\frac{R_O}{R_I-R_O}}$$

Using the given data for this problem:

$$C_I=0\,\frac{\text{g}}{\text{L}},\,R_I=16\, \frac{\text{L}}{\text{s}},\,R_O=40\, \frac{\text{L}}{\text{s}},\,V_0=1600\text{ L},\,y_0=0.0125\, \frac{\text{g}}{\text{L}}\cdot1600\text{ L}=20\text{ g}$$

we have:

$$y(t)=20\left(1-\frac{3}{200}t \right)^{\frac{5}{3}}$$

Here is a plot of the solution on the relevant domain $$0\le t\le\frac{200}{3}$$:

View attachment 1601
 

Attachments

  • alexplot.jpg
    alexplot.jpg
    10.3 KB · Views: 96
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...