Alex's question at Yahoo Answers regarding maximizing viewing angle

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Angle
Click For Summary
SUMMARY

The discussion focuses on optimizing the viewing angle in an auditorium setting with a large screen positioned 3 feet above eye level. The mathematical derivation shows that the distance from the screen, denoted as \(x\), that maximizes the viewing angle \(\theta\) is calculated using the formula \(x = \sqrt{3(3+s)}\), where \(s\) is the vertical height of the screen. The analysis employs trigonometric identities and calculus to determine critical values, confirming that the maximum viewing angle occurs at this distance.

PREREQUISITES
  • Understanding of basic trigonometry, specifically tangent functions
  • Familiarity with calculus concepts, including differentiation and critical points
  • Ability to interpret and manipulate mathematical equations
  • Knowledge of geometry related to angles and distances
NEXT STEPS
  • Explore advanced trigonometric identities and their applications in optimization problems
  • Learn about calculus techniques for finding maxima and minima in functions
  • Investigate real-world applications of viewing angle optimization in architecture and design
  • Study the impact of screen height and viewer distance on visual comfort and experience
USEFUL FOR

Mathematicians, architects, audiovisual engineers, and anyone involved in optimizing viewing experiences in auditoriums or similar settings.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How far from the screen should you stand to maximize your viewing angle?


An auditorium with a flat floor has a large screen on one wall. The lower edge of the screen is 3 ft above your eye level.

Optimization problem

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello Alex,

First let's draw a diagram:

View attachment 1638

$$s$$ is the vertical height of the screen in feet.

$$h$$ is the vertical distance from the bottom of the screen to eye level in feet.

$$\theta$$ is the viewing angle, which we wish to maximize.

We see that using the definition of the tangent function, we may write:

(1) $$\tan(\beta)=\frac{h}{x}$$

(2) $$\tan(\beta+\theta)=\frac{h+s}{x}$$

Using the angle-sum identity for tangent, (2) may be expressed as:

$$\frac{\tan(\beta)+\tan(\theta)}{1-\tan(\beta)\tan(\theta)}=\frac{h+s}{x}$$

Using (1), this becomes:

$$\frac{\frac{h}{x}+\tan(\theta)}{1-\frac{h}{x}\tan(\theta)}=\frac{h+s}{x}$$

On the left, multiplying by $$1=\frac{x}{x}$$ we obtain:

$$\frac{h+x\tan(\theta)}{x-h\tan(\theta)}=\frac{h+s}{x}$$

Now we want to solve for $\tan(\theta)$. Cross-multiplying, we find:

$$hx+x^2\tan(\theta)=(h+s)x-h(h+s)\tan(\theta)$$

Adding through by $$h(h+2)\tan(\theta)-hx$$ we get:

$$h(h+s)\tan(\theta)+x^2\tan(\theta)=(h+s)x-hx=sx$$

Factoring the left side:

$$\left(x^2+h(h+s) \right)\tan(\theta)=sx$$

Dividing through by $$x^2+h(h+s)$$ we obtain:

$$\tan(\theta)=\frac{sx}{x^2+h(h+s)}$$

Now, differentiating with respect to $x$ and equating the result to zero to find the critical value(s), we find:

$$\sec^2(\theta)\frac{d\theta}{dx}=\frac{\left(x^2+h(h+s) \right)s-sx(2x)}{\left(x^2+h(h+s) \right)^2}=\frac{s\left(h(h+s)-x^2 \right)}{\left(x^2+h(h+s) \right)^2}=0$$

Multiply through by $$\cos^2(\theta)$$ to get:

$$\frac{d\theta}{dx}=\frac{s\cos^2(\theta)\left(h(h+s)-x^2 \right)}{\left(x^2+h(h+s) \right)^2}=0$$

Since we must have $$\theta<\frac{\pi}{2}$$, our only critical value comes from:

$$h(h+s)-x^2=0$$

Since $$0<x$$ we take the positive root:

$$x=\sqrt{h(h+s)}$$

Using the first derivative test, we see:

$$\left.\frac{d\theta}{dx} \right|_{x=\sqrt{\frac{h}{2}(h+s)}}=\frac{s\cos^2(\theta)\left(h(h+s)-\frac{h}{2}(h+s) \right)}{\left(\frac{h}{2}(h+s)+h(h+s) \right)^2}=\frac{s\cos^2(\theta)\left(\frac{h}{2}(h+s) \right)}{\left(\frac{3h}{2}(h+s) \right)^2}>0$$

$$\left.\frac{d\theta}{dx} \right|_{x=\sqrt{2h(h+s)}}= \frac{s\cos^2(\theta)\left(h(h+s)-2h(h+s) \right)}{\left(2h(h+s)+h(h+s) \right)^2}= -\frac{s\cos^2(\theta)\left(h(h+s) \right)}{\left(3h(h+s) \right)^2} <0$$

Thus, we conclude the critical value is at a maximum for $\theta$.

Now, using the given value $h=3\text{ ft}$, we find the distance $x$ from the screen that maximizes the viewing angle is given by:

$$x=\sqrt{3(3+s)}$$
 

Attachments

  • alexdiagram.jpg
    alexdiagram.jpg
    6.4 KB · Views: 148
Thanks for the break down! Adding points of interest in interval notation would be helpful: (0,\infty)
 
gerald jones thanks you
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
Replies
2
Views
5K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K