Algebra Challenge: Prove $\dfrac{2007}{2}-\ldots=\dfrac{2007}{2008}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
SUMMARY

The algebraic expression $\dfrac{2007}{2}-\dfrac{2006}{3}+\dfrac{2005}{4}-\cdots-\dfrac{2}{2007}+\dfrac{1}{2008}$ is proven to equal $\dfrac{1}{1005}+\dfrac{3}{1006}+\dfrac{5}{1007}+\cdots+\dfrac{2007}{2008}$. This equality involves a series of fractions with alternating signs and is derived through manipulation of series and summation techniques. The solution highlights the importance of recognizing patterns in series to simplify complex algebraic expressions.

PREREQUISITES
  • Understanding of series and summation techniques
  • Familiarity with algebraic manipulation and simplification
  • Knowledge of alternating series
  • Basic proficiency in mathematical proofs
NEXT STEPS
  • Study the properties of alternating series in depth
  • Explore techniques for summing series, particularly telescoping series
  • Learn about mathematical induction as a proof technique
  • Investigate the convergence of series and their applications in algebra
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic techniques and series manipulation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that

$\dfrac{2007}{2}-\dfrac{2006}{3}+\dfrac{2005}{4}-\cdots-\dfrac{2}{2007}+\dfrac{1}{2008}=\dfrac{1}{1005}+\dfrac{3}{1006}+\dfrac{5}{1007}+\cdots+\dfrac{2007}{2008}$
 
Mathematics news on Phys.org
Solution proposed by other that I wanted to share it here:

Let the LHS expression be $P$ and the RHS expression be $Q$.

$R=\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\dfrac{2005}{4}+\cdots+\dfrac{1005}{1004}\right)+\left(\dfrac{1004}{1005}+\dfrac{1003}{1006}+\cdots+\dfrac{2}{2007}+\dfrac{1}{2008}\right)$

to both sides, and show that $P+R=Q+R$.

$\begin{align*} P+R&=\left(\dfrac{1}{1005}+\dfrac{1004}{1005}\right)+\left(\dfrac{3}{1006}+\dfrac{1003}{1006}\right)+\cdots+\left(\dfrac{2007}{2008}+\dfrac{1}{2008}\right)+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\\&=1004+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\end{align*}$

$\begin{align*} Q+R&=2\left(\dfrac{2007}{2}+\dfrac{2005}{4}+\cdots+\dfrac{1}{2008}\right)\\&=2007+\left(\dfrac{2005}{2}+\dfrac{2003}{3}+\cdots+\dfrac{3}{1003}+\dfrac{1}{1004}\right)\end{align*}$

Subtracting the above from below gives:

$\begin{align*} Q-P&=(2007-1004)+\left(\dfrac{2005-2007}{2}\right)+\left(\dfrac{2003-2006}{3}\right)+\cdots+\left(\dfrac{3-1006}{1003}+\right)+\left(\dfrac{1-1005}{1004}\right)\\&=1003+(-1003)\\&=0\end{align*}$

or simply $P=Q$ and hence we're done.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
908
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K