MHB Algebra Challenge: Prove $\dfrac{2007}{2}-\ldots=\dfrac{2007}{2008}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
The discussion centers on proving the equation involving a series of fractions that alternate in sign. The left side consists of terms decreasing from 2007 to 1, divided by increasing integers from 2 to 2008. The right side features a series of odd numerators over increasing denominators, starting from 1005 to 2008. A proposed solution is shared, aiming to demonstrate the equality of both sides. The challenge invites further exploration and verification of the mathematical proof.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that

$\dfrac{2007}{2}-\dfrac{2006}{3}+\dfrac{2005}{4}-\cdots-\dfrac{2}{2007}+\dfrac{1}{2008}=\dfrac{1}{1005}+\dfrac{3}{1006}+\dfrac{5}{1007}+\cdots+\dfrac{2007}{2008}$
 
Mathematics news on Phys.org
Solution proposed by other that I wanted to share it here:

Let the LHS expression be $P$ and the RHS expression be $Q$.

$R=\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\dfrac{2005}{4}+\cdots+\dfrac{1005}{1004}\right)+\left(\dfrac{1004}{1005}+\dfrac{1003}{1006}+\cdots+\dfrac{2}{2007}+\dfrac{1}{2008}\right)$

to both sides, and show that $P+R=Q+R$.

$\begin{align*} P+R&=\left(\dfrac{1}{1005}+\dfrac{1004}{1005}\right)+\left(\dfrac{3}{1006}+\dfrac{1003}{1006}\right)+\cdots+\left(\dfrac{2007}{2008}+\dfrac{1}{2008}\right)+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\\&=1004+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\end{align*}$

$\begin{align*} Q+R&=2\left(\dfrac{2007}{2}+\dfrac{2005}{4}+\cdots+\dfrac{1}{2008}\right)\\&=2007+\left(\dfrac{2005}{2}+\dfrac{2003}{3}+\cdots+\dfrac{3}{1003}+\dfrac{1}{1004}\right)\end{align*}$

Subtracting the above from below gives:

$\begin{align*} Q-P&=(2007-1004)+\left(\dfrac{2005-2007}{2}\right)+\left(\dfrac{2003-2006}{3}\right)+\cdots+\left(\dfrac{3-1006}{1003}+\right)+\left(\dfrac{1-1005}{1004}\right)\\&=1003+(-1003)\\&=0\end{align*}$

or simply $P=Q$ and hence we're done.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
990
Replies
1
Views
858
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 142 ·
5
Replies
142
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K