MHB Algebra Challenge: Prove $\dfrac{2007}{2}-\ldots=\dfrac{2007}{2008}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
The discussion centers on proving the equation involving a series of fractions that alternate in sign. The left side consists of terms decreasing from 2007 to 1, divided by increasing integers from 2 to 2008. The right side features a series of odd numerators over increasing denominators, starting from 1005 to 2008. A proposed solution is shared, aiming to demonstrate the equality of both sides. The challenge invites further exploration and verification of the mathematical proof.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that

$\dfrac{2007}{2}-\dfrac{2006}{3}+\dfrac{2005}{4}-\cdots-\dfrac{2}{2007}+\dfrac{1}{2008}=\dfrac{1}{1005}+\dfrac{3}{1006}+\dfrac{5}{1007}+\cdots+\dfrac{2007}{2008}$
 
Mathematics news on Phys.org
Solution proposed by other that I wanted to share it here:

Let the LHS expression be $P$ and the RHS expression be $Q$.

$R=\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\dfrac{2005}{4}+\cdots+\dfrac{1005}{1004}\right)+\left(\dfrac{1004}{1005}+\dfrac{1003}{1006}+\cdots+\dfrac{2}{2007}+\dfrac{1}{2008}\right)$

to both sides, and show that $P+R=Q+R$.

$\begin{align*} P+R&=\left(\dfrac{1}{1005}+\dfrac{1004}{1005}\right)+\left(\dfrac{3}{1006}+\dfrac{1003}{1006}\right)+\cdots+\left(\dfrac{2007}{2008}+\dfrac{1}{2008}\right)+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\\&=1004+\left(\dfrac{2007}{2}+\dfrac{2006}{3}+\cdots+\dfrac{1005}{1004}\right)\end{align*}$

$\begin{align*} Q+R&=2\left(\dfrac{2007}{2}+\dfrac{2005}{4}+\cdots+\dfrac{1}{2008}\right)\\&=2007+\left(\dfrac{2005}{2}+\dfrac{2003}{3}+\cdots+\dfrac{3}{1003}+\dfrac{1}{1004}\right)\end{align*}$

Subtracting the above from below gives:

$\begin{align*} Q-P&=(2007-1004)+\left(\dfrac{2005-2007}{2}\right)+\left(\dfrac{2003-2006}{3}\right)+\cdots+\left(\dfrac{3-1006}{1003}+\right)+\left(\dfrac{1-1005}{1004}\right)\\&=1003+(-1003)\\&=0\end{align*}$

or simply $P=Q$ and hence we're done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
881
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 142 ·
5
Replies
142
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K