Algebra/Physics problem - kinematics

  • Context: MHB 
  • Thread starter Thread starter mathkid3
  • Start date Start date
  • Tags Tags
    Kinematics
Click For Summary
SUMMARY

The discussion centers on calculating the minimum runway length required for a light plane to reach a takeoff speed of 33 m/s with a constant acceleration of 3.8 m/s². Utilizing the kinematic equations, specifically the second equation for velocity and the first equation for distance, the solution reveals that the plane requires a minimum runway length of 143.30 meters. The initial conditions assumed are that the plane starts from rest (initial velocity V0 = 0) and begins at the starting point of the runway (x0 = 0).

PREREQUISITES
  • Understanding of kinematic equations, specifically the four basic equations of motion.
  • Knowledge of basic algebra for solving equations.
  • Familiarity with concepts of acceleration and velocity.
  • Ability to manipulate and substitute values in mathematical formulas.
NEXT STEPS
  • Study the derivation and applications of the four basic kinematic equations.
  • Practice solving problems involving constant acceleration in one dimension.
  • Explore real-world applications of kinematics in aviation and vehicle dynamics.
  • Learn about the effects of varying acceleration on motion and distance calculations.
USEFUL FOR

Students in physics or engineering, educators teaching kinematics, and anyone interested in understanding motion dynamics in aviation contexts.

mathkid3
Messages
23
Reaction score
0
A light plane must reach a speed of 33 m/s for takeoff. How long must the runway be if the plane has a constant acceleration of 3.8 m/s2 ?so, I am new to kinomatic equations. We are using the 4 Basic ones.

need to see this one worked out if I may.Thanks
 
Mathematics news on Phys.org
Re: Algebra/Physics problem

What is the target variable? That is, what is it for which you're trying to solve?
 
Re: Algebra/Physics problem

distance?
 
Re: Algebra/Physics problem

What is it that you are given? And how may we relate these values?
 
Re: Algebra/Physics problem

Another way of saying what MarkFL said is this: can you write down a relevant, correct equation involving the target variable of distance?
 
Re: Algebra/Physics problem

mathkid3 said:
A light plane must reach a speed of 33 m/s for takeoff. How long must the runway be if the plane has a constant acceleration of 3.8 m/s2 ?so, I am new to kinomatic equations. We are using the 4 Basic ones.

need to see this one worked out if I may.Thanks

I think the OP meant the kinematic equations, 4 basic ones meaning:

1) x=x0+V0t+1/2at2
2) V=V0+at
3) a=constant
4) V2=V02+2a(x-x0)

If this is the case, the answer is a matter of determining starting values.

We can assume that the plane starts off at point 0 on the runway meaning that x0=0. we can also assume that the plane's initial velocity is 0, V0=0 (before moving). now we are given the acceleration, a=3.8m/s2, and final velocity, V=33m/s. From this we can find how long it will take the plane to reach the final velocity, using equation 2:

33m/s=0+(3.8m/s2)t
t=(33/3.8)s

Now that we have a value for t, we can use equation 1 to find the total runway length, x, required to reach takeoff speed:

x=0+0(t)+1/2at2
=(1/2)(3.8m/s2)((33/3.8)s)2
=143.30m

therefore the minimum amount of runway needed to reach the plane's necessary takeoff speed is 143.30 meters.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
7K