MHB Algebra Problem About Quadratic Function

AI Thread Summary
The discussion centers on three equations representing the same quadratic function and how to determine their x-intercepts and graph them. The factored form, y = (x - 5)(x + 1), is identified as the easiest for finding x-intercepts due to the zero-factor property. For graphing, the vertex form, y = (x - 2)^2 - 9, is preferred as it clearly indicates the vertex at (2, -9) and shows the parabola's shape. Participants clarify that the graph should be a parabola, not a straight line, and emphasize the importance of using the correct forms for specific tasks. Overall, understanding the different forms of the quadratic function aids in both finding intercepts and graphing accurately.
Joystar77
Messages
122
Reaction score
0
These 3 equations all describe the same quadratic function. What are the coordinates of the following points on the graph of the function? From which equation is each point most easily determined?

y = (x - 5) (x + 1)

y = x ^ 2 - 4x - 5

y = (x - 2) ^ 2 - 9

X-intercept, what are the points, equation, and explanation why that equation is the one

from which the x-intercepts are most easily determined?

Please tell me someone if this is correct or am I thinking of something else:

The simple way to graph y = (x - 5) (x + 1) is to generate at least four points, put those on graph paper and draw a straight line through them.

Here's how I generate the required points:

Use the equation, y = (x -5) (x + 1) and choose an integer for x, say x = 2, and substitute this into your equation to find the corresponding value of y.

y = (x - 5) (x + 1)

y = (2-5) (2 + 1)

y = (-3) (3)

y = -9

So, my first two points has coordinates of (2, -9). Now am I suppose to repeat this operation with a different value of x, say x = 4.

y = (x - 5) (x + 1)

y = (4 -5) (4 + 1)

y = (-1) (5)

y = -5

So, my second two points has coordinates of (4, -5).

Now mark these two locations on graph paper starting at the origin of my graph (where the x-axis crosses the y-axis), go to the right of 2 squares (x = 2) then down 9 squares
y = -9) and mark your first point.

For the second point, again, start at the origin and go right 4 squares (x = 4) and then down 5 squares (y = -5) and mark your second point.

Using a straight edge, draw a line joining these two points. You have now graphed the equation y = ( x -5) (x + 1).

Compare your graph with the graph of y = (x -5) (x + 1).

Am I starting this out right or am I thinking of something different? Please somebody let me know.
 
Mathematics news on Phys.org
You are correct that the factored form:

$$y=(x-5)(x+1)$$

is the easiest form for determining the $x$-intercepts. These intercepts occur for $y=0$, and this factored form allows us to use the zero-factor property to quickly determine them by equating each factor to zero and solving for $x$.

As far as graphing the function, you need to observe that it is a quadratic function, and so its graph will be that of a parabola, not a straight line. For graphing, the easiest way is to use the vertex form:

$$y=(x-2)^2-9$$

and observe that this is simply the graph of $y=x^2$ translated two units to the right and nine units down. Its vertex is at $(2,-9)$.
 
Why is the equation y = (x - 2) ^2 - 9 the one out of all three equations listed below:

y = (x - 5) (x + 1)

y = x^2 - 4x - 5

y = (x - 2) ^2 - 9

the one from which the x-intercepts are most easily determined? Can you explain this?
 
Joystar1977 said:
Why is the equation y = (x - 2) ^2 - 9 the one out of all three equations listed below:

y = (x - 5) (x + 1)

y = x^2 - 4x - 5

y = (x - 2) ^2 - 9

the one from which the x-intercepts are most easily determined? Can you explain this?

It is the factored form:

$y=(x-5)(x+1)$

from which the $x$-intercepts are most easily determined, the reason for which I explained in my post above. However, the vertex form:

$$y=(x-2)^2-9$$

is the easiest to use for graphing purposes. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
2K
Replies
3
Views
2K
Replies
8
Views
1K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Back
Top