MHB Algebraic Fraction: How to Solve and Simplify?

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Fraction
mathlearn
Messages
331
Reaction score
0
Hi,


$$\frac{3 }{ 2(x+1)} + \frac{1}{x+1} = \frac{5}{6}$$
Can you help me on this problem. I'm not sure on how to solve this and please be kind enough to explain your steps little bitMany Thanks:)
 
Last edited:
Mathematics news on Phys.org
mathlearn said:
Hi,


$$\frac{3 }{ 2(x+1)} + \frac{1}{x+1} = \frac{5}{6}$$
Can you help me on this problem. I'm not sure on how to solve this and please be kind enough to explain your steps little bitMany Thanks:)
Hint: What is the common denominator for these fractions?

-Dan
 
Last edited by a moderator:
not sure might be (x+1) or 2,1?? :)
 
mathlearn said:
not sure might be (x+1) or 2,1?? :)
The common denominator will contain 3 terms: (x + 1), 2(x + 1), and 6. So it must have one factor of (x + 1) and a factor of 6. (The 6 = 2 x 3, so it contains the 2 automatically.) So you are looking for 6 (x + 1), right? Can you take it from there?

-Dan
 
Just multiply the numerator and denominator of second term of LHS by 2 to equate it's denominator to the first term of LHS.

$$\frac{3}{2(x+1)} + \frac{1}{x+1} = \frac{5}{6}$$

$$\frac{3}{2(x+1)} + \frac{{\color{red}{2}} \cdot 1}{{\color{red}{2}} \cdot (x+1)} = \frac{5}{6}$$

$$\frac{5}{2(x+1)} = \frac{5}{6}$$

$$x=2$$

Verify it by substituting the value of $x$ to be 2 in the LHS.
 
Many Thanks (Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
41
Views
5K
Replies
7
Views
2K
Replies
10
Views
2K
Replies
11
Views
2K
Replies
1
Views
2K
Replies
1
Views
3K
Replies
3
Views
2K
Back
Top