My apologies, I introduced little-##r## in post #23.
Let me present a revised compilation of my step-by-step reasoning:
- Define the radical ##R##, its conjugate ##\overline{R}##, and find their product ##R\overline{R}##:$$R\equiv\left(\frac{5\sqrt{5}-11}{2^{6}}\right)^{\frac{1}{5}},\quad\overline{R}\equiv\left(\frac{5\sqrt{5}+11}{2^{6}}\right)^{\frac{1}{5}}\Rightarrow R\overline{R}=\frac{1}{4}\tag{1a,1b,1c}$$
- Define an expression ##r## and its conjugate ##\overline{r}## such that each is linear in the radical ##\sqrt{5}##:$$r\equiv a\sqrt{5}-b,\quad\overline{r}\equiv a\sqrt{5}+b\tag{2a,2b}$$
- Motivated by eq.(1c), impose the condition:$$r\overline{r}=5a^2-b^2=\frac{1}{4}\tag{3}$$
- Solve eq.(3) for ##b## and insert it into eq.(2) to find:$$r=a\sqrt{5}-\frac{1}{2}\sqrt{20a^{2}-1}\equiv\frac{\sqrt{5}}{n}-\frac{\sqrt{20-n^{2}}}{2n},\quad\overline{r}=\frac{\sqrt{5}}{n}+\frac{\sqrt{20-n^{2}}}{2n}\tag{4a,4b}$$where ##n\equiv a^{-1}##.
- Now demand that, when ##r## and ##\overline{r}## are raised to integer powers, the resulting expressions should contain no irreducible square-roots other than ##\sqrt{5}##. The simplest way to guarantee this is to insist that the coefficients ##n^{-1}## and ##(2n)^{-1}\sqrt{20-n^{2}}## in eqs.(4) themselves contain no irreducible roots whatsoever. Then in particular, ##\left|n\right|## must fall in the range ##0<\left|n\right|\leq\sqrt{20}## so that ##\sqrt{20-n^{2}}## is real and ##20-n^{2}## must be a perfect square. The only two values that satisfy these criteria are ##\left|n\right|=2## and ##\left|n\right|=4##, thus yielding the 4 values:$$r_{2}=\frac{\sqrt{5}}{2}-1,\quad\overline{r}_{2}=\frac{\sqrt{5}}{2}+1,\quad r_{4}=\frac{\sqrt{5}-1}{4},\quad\overline{r}_{4}=\frac{\sqrt{5}+1}{4}\tag{5a,5b,5c,5d}$$(Here I've ignored trivial variations involving multiplication by ##-1## on the right sides.)
- Using Mathematica to raise the right sides of eqs.(5) to the fifth power, I verify the following 4 identities:$$\left(\frac{305\sqrt{5}-682}{2^{5}}\right)^{\frac{1}{5}}\equiv\frac{\sqrt{5}}{2}-1,\quad\left(\frac{305\sqrt{5}+682}{2^{5}}\right)^{\frac{1}{5}}\equiv\frac{\sqrt{5}}{2}+1\tag{6a,6b}$$and$$\left(\frac{5\sqrt{5}-11}{2^{6}}\right)^{\frac{1}{5}}\equiv\frac{\sqrt{5}-1}{4},\quad\left(\frac{5\sqrt{5}+11}{2^{6}}\right)^{\frac{1}{5}}\equiv\frac{\sqrt{5}+1}{4}\tag{6c,6d}$$Under the criteria set-out in step 5, these are the only 4 identities that satisfy ##R=r,\overline{R}=\overline{r}, R\overline{R}=r\overline{r}=\frac{1}{4}##. Specifically, eq.(6c) establishes the identity in the OP's first post. QED
As far as I'm aware, I nowhere
assume that ##r=\frac{\sqrt{5}-1}{4}##. Rather, I
derive it from the 3 criteria that:
a) ##r## is linear in the radical ##\sqrt{5}##,
b) ##r## involves no other irreducible radicals, and
c) ##r\overline{r}=\frac{1}{4}##.