MHB Algebraic Rational Expressions

jjlittle00
Messages
2
Reaction score
0
I am attempting to find the solution to the following question.

Simplify and state the restrictions on the variables$$\frac{5a^5b^6}{10a^2b^3}\div\frac{2a^4b^2}{20a^3b^5}$$

Not really understanding how to find the restrictions with these set variables.
 
Last edited:
Mathematics news on Phys.org
Hello and welcome to MHB, jjlittle00! (Wave)

I am assuming the expression is as follows:

$$\frac{5a^5b^6}{10a^2b^3}\div\frac{2a^2b^3}{20a^2b^3}$$

Before we proceed, is this correct?
 
MarkFL said:
Hello and welcome to MHB, jjlittle00! (Wave)

I am assuming the expression is as follows:

$$\frac{5a^5b^6}{10a^2b^3}\div\frac{2a^4b^2}{20a^3b^5}$$

Before we proceed, is this correct?
Yes this is correct. Just made one small correction.
 
jjlittle00 said:
Yes this is correct. Just made one small correction.

Okay, we now have:

$$\frac{5a^5b^6}{10a^2b^3}\div\frac{2a^4b^2}{20a^3b^5}$$

We have one rational expression being divided by another. In order for these expressions to be defined, we cannot have either denominator being equal to zero. What values of $a$ and/or $b$ will cause either denominator to be zero?
 
Also, when we divide by a fraction, we "invert and multiply": \frac{5a^5b^6}{10a^2b^3}\frac{20a^3b^5}{2a^4b^2}. So that, in addition to the requirement that the denominators of the original fractions not being 0, 2a^4b^2 cannot be 0. That is effectively saying that a and b cannot be 0.

Of course, to "simplify" you cancel as many "a"s and "b"s, in numerator and denominator, as you can.
 
HallsofIvy said:
Also, when we divide by a fraction, we "invert and multiply": \frac{5a^5b^6}{10a^2b^3}\frac{20a^3b^5}{2a^4b^2}. So that, in addition to the requirement that the denominators of the original fractions not being 0, 2a^4b^2 cannot be 0. That is effectively saying that a and b cannot be 0.

Of course, to "simplify" you cancel as many "a"s and "b"s, in numerator and denominator, as you can.

I was going to get to all that eventually...honest I was...:p
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top