Natural Numbers: Proving Statements w/ Induction

Click For Summary
SUMMARY

This discussion focuses on the application of mathematical induction to prove statements involving multiple natural numbers, specifically A(n_1, ..., n_k). It is established that proving a statement for one variable, such as A(n_1), can suffice under certain conditions, particularly when the induction hypothesis can be logically extended to other variables. The example provided illustrates the binomial coefficient identity, \binom{n+m}{k}=\displaystyle\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}, demonstrating how induction can be structured in a staircase format to validate the truth of the statement across multiple dimensions.

PREREQUISITES
  • Understanding of mathematical induction principles
  • Familiarity with binomial coefficients and their properties
  • Knowledge of multi-variable functions and their representations
  • Ability to construct and interpret mathematical proofs
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Learn about binomial coefficients and their applications in combinatorics
  • Explore multi-variable induction techniques and their proofs
  • Investigate the logical equivalence of induction hypotheses in multi-variable contexts
USEFUL FOR

Mathematicians, educators, and students interested in advanced proof techniques, particularly those dealing with induction in multi-variable scenarios.

littleHilbert
Messages
55
Reaction score
0
Hello!

Question:

if it is asked to prove a statement A(n_1,...,n_k) for all natural numbers n_1,...,n_k, is it actually enough to check its truth by induction on just one of the counters, say n_1?
 
Mathematics news on Phys.org


I'm not sure you are saying what you mean. If you are asked to prove a statement A(n) for all natural numbers 1, 2, 3, ..., then yes, induction is the way to go.

Or is your statement a function of k different natural numbers? Can you give a simple example of a statement you're talking about?
 


With one-variable induction, you can think of the induction as walking up a ladder. Draw each sentence in a (one-dimension) grid.

Code:
A(0)
A(1)
A(2)
A(3)
...

Usually, in induction, you have to prove two things:
* A(0) is true.
* If any sentence in the grid is true, the one beneath it is also true. (A(n) => A(n+1))

Once you have proven these two things, you can start at A(0) and "walk" up the ladder, proving each is true. More importantly, given any A(n), you can use those to rules to show that A(n) is true.For induction on more variables, things are slightly more complicated. Start with induction on two variables: A(x, y).

Draw these sentences out in a (two dimensional) grid:

Code:
A(0, 0) A(1, 0) A(2, 0) ...
A(0, 1) A(1, 1) A(2, 1) ...
A(0, 2) A(1, 2) A(2, 2) ...
A(0, 3) A(1, 3) A(2, 3) ...
...       ...        ...       ...

Now, you're not simply walking down a line. You have to fill an area. There are a few different ways to do it. For example, you might prove A(x, y) is true for all x and y by:
* Proving A(0, 0) is true
* Proving that for any element in the grid, the one below it is true. (A(n, m) => A(n+1, m))
* Proving that for any element in the grid, the one to the right of it is true. (A(n, m) => A(n, m+1))

If you have all three of those proven, then you can again start at A(0, 0) and walk left and down until you reach any arbitrary statement you want to verify.

You can also it it other ways though. You can break it into two singular inductions:
* Prove A(0, 0).
* Prove that if any sentence is true, all the ones below it are also true via single-variable induction.
* Prove that if any sentence is true, all the ones to the right are also true, via single-variable induction.

You can also do more exotic things if the problem calls for it. But the idea is the same. As long as you can reach any statement in the grid by taking a finite number of induction steps, you have proved the whole grid contains nothing but truths.

This extends easily to any finite number of variables. For A(n_1, ..., n_k), you simply use a k-dimensional grid.
 


Mark44 said:
I'm not sure you are saying what you mean. If you are asked to prove a statement A(n) for all natural numbers 1, 2, 3, ..., then yes, induction is the way to go.

Or is your statement a function of k different natural numbers? Can you give a simple example of a statement you're talking about?

An example is

\binom{n+m}{k}=\displaystyle\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}. It is asked to prove it for all naturals n,m,k.

They say it is enough to prove it for example just for m. The reason, which was brought forward, is that in the induction step we assume the truth of the identity for fixed m and for all n and k. I was not sure we could use it as the induction hypothesis straightaway. As Tac-Tics points out the whole proof should have a staircase structure once we start the induction on one of the counters. This is my opinion too.

At the same time it is reasonable to assume that the induction hypothesis A(m) (here m is arbitrary but fixed) is logically equivalent to A(n,k) (here it holds for all n and k), which in this case makes one think that it's not required to check the truth of A(n,k) by induction on n and k. But is it really an equivalence in a general setting?
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K