Ampere's Law for Cylindrical Conductor

AI Thread Summary
The discussion revolves around the application of Ampere's Law to a cylindrical conductor, specifically addressing the calculation of enclosed current. The user calculates the current density for the outer tube and the area of the enclosed portion but questions the correctness of their area expression. Clarification is sought on whether Ra represents the inner or outer radius of the tube, which is crucial for accurate area calculation. The user combines the inner and outer currents to find the total enclosed current but receives feedback indicating an error in their approach. The conversation highlights the importance of correctly identifying geometric parameters in electromagnetic calculations.
amwil
Messages
3
Reaction score
0
Homework Statement
A solid cylindrical conductor is supported by insulating disks on the axis of a conducting tube with outer radius Ra = 6.85 cm and inner radius Rb = 3.75 cm . (Figure 1) The central conductor and the conducting tube carry equal currents of I = 2.85 A in opposite directions. The currents are distributed uniformly over the cross sections of each conductor. What is the value of the magnetic field at a distance r = 4.74 cm from the axis of the conducting tube?
What is the expression for the current Iencl enclosed in the path of integration in terms of the current I , the outer radius Ra , the inner radius Rb , and the distance from the axis r where Ra>r>Rb ?
Express your answer in terms of I , Ra , Rb , and r .
Relevant Equations
I = JA
I know that Ienl for the inner cylinder is just I and the current density for the outer tube is J1= -I/(pi(Ra^2-Rb^2). I assume that the current through the enclosed portion of the conducting tube (I1) is equal to J1(A1) where A1 is the area of the enclosed portion of the conducting tube. I found A1=pi(Ra^2-r^2) then multiplied it by J1 to get I1 = (-I(Ra^2-r^2))/(Ra^2-Rb^2). Then I added Iencl for the inner cylinder and I1 for the outer tube to get Iencl= I + (-I(Ra^2-r^2))/(Ra^2-Rb^2) but it said this was wrong. Can someone tell me what I'm doing wrong??
 
Physics news on Phys.org
amwil said:
I know that Ienl for the inner cylinder is just I and the current density for the outer tube is J1= -I/(pi(Ra^2-Rb^2).
OK

amwil said:
I assume that the current through the enclosed portion of the conducting tube (I1) is equal to J1(A1) where A1 is the area of the enclosed portion of the conducting tube.
OK

amwil said:
I found A1=pi(Ra^2-r^2)
Are you sure this is the correct expression for the area of the enclosed portion of the tube?
 
To be more explicit: Is ##R_a## the inner radius or is it the outer radius of the tube?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top