MHB An absurdly interesting radical....

DreamWeaver
Messages
297
Reaction score
0
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?
 
Mathematics news on Phys.org
Incidentally, I'm only part-way toward a proof myself, so I don't have the answer yet. But still, it's both a Challenge and a Puzzle, so I thought of this board... (Heidy)
 
DreamWeaver said:
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?

Setting $\displaystyle x = f(\varepsilon)$ the x must satisfy the equation $\displaystyle \sqrt{\varepsilon + x} = x$ and, if You suppose that thye only positive value of a square root must be considered, the explicit expression of f(*) is... $\displaystyle f(\varepsilon) = \frac{1 + \sqrt{1 + 4\ \varepsilon}}{2}\ (1)$ ... and observing (1) it seems to be $\displaystyle \lim_{\varepsilon \rightarrow 0} f(\varepsilon) = 1$. However we have to consider that we are evaluating the 'limit of a limit' like $\displaystyle \lim _{\varepsilon \rightarrow 0}\ \lim_{n \rightarrow \infty} \text {of something}$ and the result can be different if You invert the order of limits and evaluate $\displaystyle \lim_{n \rightarrow \infty}\ \lim_{\varepsilon \rightarrow 0}\ \text {of something}$. For this reason also the alternative... $\displaystyle f(\varepsilon) = \frac{1 - \sqrt{1 + 4\ \varepsilon}}{2}\ (2)$

... [supposing to consider the negative value of the square root...] should be considered and in this case is $\displaystyle \lim_{\varepsilon \rightarrow 0} f(\varepsilon) = 0$. All that in any case requires more investigation...
Kind regards $\chi$ $\sigma$
 
A so called crank used this to prove that $1 = 0$ quite a few days ago in MMF : http://www.mymathforum.com/viewtopic.php?f=40&t=44831
 
DreamWeaver said:
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?

In order to get a correct answer to the question You have to clarify what the expression $\displaystyle f(\epsilon)= \sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } }$ means. In effect is $\displaystyle f(\epsilon) = \lim_{n \rightarrow \infty} a_{n}$ where $a_{n}$ satisfy the difference equation... $\displaystyle a_{n+1} = \sqrt{a_{n} + \epsilon},\ a_{0}= \epsilon\ (1)$

Analysing (1) You imposing the condition $\Delta_{n} = a_{n+1} - a_{n} =0$ You find that that there is an attractive fixed point in $\displaystyle x_{1} = \frac{1 + \sqrt{1 + 4\ \epsilon}}{2}$ and a repulsive fixed point in $\displaystyle x_{0} = \frac{1 - \sqrt{1 + 4\ \epsilon}}{2}$ and that means that for any $\displaystyle x_{0} < \epsilon < x_{1}$ is $\displaystyle f(\epsilon) = x_{1} = \frac{1 + \sqrt{1 + 4\ \epsilon}}{2}$ and $\displaystyle \lim_{\epsilon \rightarrow 0} f(\epsilon)=1$, even if [and that is an important detail...] is $\displaystyle f(0)=0$... Kind regards $\chi$ $\sigma$
 
I am not sure if this actually works (there might be something missing) but here goes:

[sp]Suppose $\sqrt{a + \sqrt{a + \sqrt{a + \cdots}}} = a^*$, $\sqrt{b + \sqrt{b + \sqrt{b + \cdots}}} = b^*$, and $0 < a < b$.

Then $a^* = \frac{1 + \sqrt{1 + 4a}}{2}$ and $b^* = \frac{1 + \sqrt{1 + 4b}}{2}$ therefore it follows that $a^* < b^*$.

Now suppose that $a^* < 1$. This leads to the contradiction that $\sqrt{1 + 4a} < 1$. Therefore $a^* \geq 1$, so $1 \leq a^* < b^*$.

Therefore $a^*$ goes to $1$ as $a$ goes to $0$.

$\blacksquare$[/sp]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top