MHB An absurdly interesting radical....

AI Thread Summary
The discussion centers around the limit $$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$ and the challenge of proving it. Participants explore the definition of the expression as a limit of a sequence defined by a difference equation. They identify attractive and repulsive fixed points, concluding that the limit approaches 1 as epsilon approaches 0, despite the function equating to 0 at epsilon equals 0. The conversation highlights the complexity and intrigue of the limit, inviting further exploration and proof.
DreamWeaver
Messages
297
Reaction score
0
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?
 
Mathematics news on Phys.org
Incidentally, I'm only part-way toward a proof myself, so I don't have the answer yet. But still, it's both a Challenge and a Puzzle, so I thought of this board... (Heidy)
 
DreamWeaver said:
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?

Setting $\displaystyle x = f(\varepsilon)$ the x must satisfy the equation $\displaystyle \sqrt{\varepsilon + x} = x$ and, if You suppose that thye only positive value of a square root must be considered, the explicit expression of f(*) is... $\displaystyle f(\varepsilon) = \frac{1 + \sqrt{1 + 4\ \varepsilon}}{2}\ (1)$ ... and observing (1) it seems to be $\displaystyle \lim_{\varepsilon \rightarrow 0} f(\varepsilon) = 1$. However we have to consider that we are evaluating the 'limit of a limit' like $\displaystyle \lim _{\varepsilon \rightarrow 0}\ \lim_{n \rightarrow \infty} \text {of something}$ and the result can be different if You invert the order of limits and evaluate $\displaystyle \lim_{n \rightarrow \infty}\ \lim_{\varepsilon \rightarrow 0}\ \text {of something}$. For this reason also the alternative... $\displaystyle f(\varepsilon) = \frac{1 - \sqrt{1 + 4\ \varepsilon}}{2}\ (2)$

... [supposing to consider the negative value of the square root...] should be considered and in this case is $\displaystyle \lim_{\varepsilon \rightarrow 0} f(\varepsilon) = 0$. All that in any case requires more investigation...
Kind regards $\chi$ $\sigma$
 
A so called crank used this to prove that $1 = 0$ quite a few days ago in MMF : http://www.mymathforum.com/viewtopic.php?f=40&t=44831
 
DreamWeaver said:
Here's an interesting limit I found the other day...$$\text{limit}_{\, \epsilon \to 0^{+}}\sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } } = 1$$It's both obvious and yet elusive... Any ideas on how to prove it...?

In order to get a correct answer to the question You have to clarify what the expression $\displaystyle f(\epsilon)= \sqrt{\epsilon + \sqrt{\epsilon + \sqrt{ \epsilon + \sqrt{\epsilon + \cdots} } } }$ means. In effect is $\displaystyle f(\epsilon) = \lim_{n \rightarrow \infty} a_{n}$ where $a_{n}$ satisfy the difference equation... $\displaystyle a_{n+1} = \sqrt{a_{n} + \epsilon},\ a_{0}= \epsilon\ (1)$

Analysing (1) You imposing the condition $\Delta_{n} = a_{n+1} - a_{n} =0$ You find that that there is an attractive fixed point in $\displaystyle x_{1} = \frac{1 + \sqrt{1 + 4\ \epsilon}}{2}$ and a repulsive fixed point in $\displaystyle x_{0} = \frac{1 - \sqrt{1 + 4\ \epsilon}}{2}$ and that means that for any $\displaystyle x_{0} < \epsilon < x_{1}$ is $\displaystyle f(\epsilon) = x_{1} = \frac{1 + \sqrt{1 + 4\ \epsilon}}{2}$ and $\displaystyle \lim_{\epsilon \rightarrow 0} f(\epsilon)=1$, even if [and that is an important detail...] is $\displaystyle f(0)=0$... Kind regards $\chi$ $\sigma$
 
I am not sure if this actually works (there might be something missing) but here goes:

[sp]Suppose $\sqrt{a + \sqrt{a + \sqrt{a + \cdots}}} = a^*$, $\sqrt{b + \sqrt{b + \sqrt{b + \cdots}}} = b^*$, and $0 < a < b$.

Then $a^* = \frac{1 + \sqrt{1 + 4a}}{2}$ and $b^* = \frac{1 + \sqrt{1 + 4b}}{2}$ therefore it follows that $a^* < b^*$.

Now suppose that $a^* < 1$. This leads to the contradiction that $\sqrt{1 + 4a} < 1$. Therefore $a^* \geq 1$, so $1 \leq a^* < b^*$.

Therefore $a^*$ goes to $1$ as $a$ goes to $0$.

$\blacksquare$[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top