DreamWeaver
- 297
- 0
Let $$\zeta(x)$$ be the Zeta function (where, for convenience, $$x$$ is assumed to be $$> 1$$).
$$\zeta(x) = \sum_{k=1}^{\infty}\frac{1}{k^x}$$Similarly, define the Eta function (alternating Zeta function) by the following series - where again, in this case, we assume $$x > 1$$:$$\eta(x) = \sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^x}$$
Problem:Express the second derivative of the Eta function - at $$x=4$$ - in terms of the Zeta function (differentiated or otherwise), at $$x=4$$.
$$\zeta(x) = \sum_{k=1}^{\infty}\frac{1}{k^x}$$Similarly, define the Eta function (alternating Zeta function) by the following series - where again, in this case, we assume $$x > 1$$:$$\eta(x) = \sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^x}$$
Problem:Express the second derivative of the Eta function - at $$x=4$$ - in terms of the Zeta function (differentiated or otherwise), at $$x=4$$.