The problem at hand: [tex]\inline{\sum_{k=1}^n \frac{(k+1)!}{(k+3)!}}[/tex](adsbygoogle = window.adsbygoogle || []).push({});

Hence, find the limiting sum of the series, as n ---> infinity.

Start this summation by expanding out the factorial to have a common factor of k!(k+1) as follows:

[tex]\sum_{k=1}^n \frac{(k+1)!}{(k+3)!} = \sum_{k=1}^n \frac{k!(k+1)}{k!(k+1)(k+2)(k+3)} [/tex]

Next step is to cancel the terms on the numerator and denominator:

[tex]\sum_{k=1}^n \frac{k!(k+1)}{k!(k+1)(k+2)(k+3)} = \sum_{k=1}^n \frac{1}{(k+2)(k+3)}[/tex]

Now consider the kth term:

[tex]U_{k} = \frac{1}{(k+2)(k+3)}[/tex]

Apply a differences method:

[tex]U_{k} = \frac{1}{(k+2)(k+3)}*[\frac{(k+3) - (k+2)}{1}][/tex]

[tex]U_{k} = \frac{(k+3)}{(k+2)(k+3)} - \frac{(k+2)}{(k+2)(k+3)}[/tex]

[tex]U_{k} = \frac{1}{k+2} - \frac{1}{k+3}[/tex]

[tex].: U_{k} = V_{k} - V_{k+1}[/tex]

Note that [tex]\inline{V_{k} = \frac{1}{k+2} \forall{k} \in N}[/tex].

[tex]S_{n} = U_{1} + U_{2} + U_{3} + U_{4} + ... + U_{n}[/tex]

[tex]S_{n} = (V_{1} - V_{2}) + (V_{2} - V_{3}) + ... + (V_{n} - V_{n+1})[/tex]

[tex].: S_{n} = V_{1} - V_{n+1}[/tex]

[tex]\sum_{k=1}^n \frac{(k+1)!}{(k+3)!} = S_{n}[/tex]

Now, substitute in the values k = 1 and k = (n + 1) into [tex]\inline{V_{k}}[/tex] to get the difference [tex]\inline{V_{1} - V_{n+1}}[/tex].

[tex]V_{1} - V_{n+1} = \frac{1}{3} - \frac{1}{n+3}[/tex]

[tex].: \sum_{k=1}^n \frac{(k+1)!}{(k+3)!} = \frac{1}{3} - \frac{1}{n+3}[/tex]

It has therefore been shown that the answer to this sum to n terms is [tex]\inline{\frac{1}{3} - \frac{1}{n+3} \forall{n} \in N}[/tex], the result which can be proven by mathematical induction.

And for the sum to infinity, follow these steps:

[tex]\\lim_{n\Rightarrow {\infty}} \sum_{k=1}^n \frac{(k+1)!}{(k+3)!} = \\lim_{n\Rightarrow {\infty}} (\frac{1}{3} - \frac{1}{n+3})[/tex]

[tex]\\lim_{n\Rightarrow {\infty}} (\frac{1}{3} - \frac{1}{n+3}) = \frac{1}{3}[/tex]

[tex].: \\lim_{n\Rightarrow {\infty}} S_{n} = \frac{1}{3}[/tex]

The problem has thus been completed.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# An example of a series involving factorials

**Physics Forums | Science Articles, Homework Help, Discussion**