An interesting logarithm integral

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$\int^1_0 \frac{\log(x)\log(x+1)}{1-x} \, dx$$, which some participants approximate as -0.5 based on results from Wolfram Alpha. The thread explores various mathematical techniques and identities, including integration by parts and dilogarithm identities, to solve the integral.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants suggest that the integral may require dilogarithm identities and propose integration by parts as a potential first step.
  • One participant clarifies that the logarithm in question is the natural logarithm (base e), which is a common assumption in complex analysis.
  • Another participant presents a transformation of the integral using the substitution $$x = 1-t$$, leading to a reformulation involving $$\log(1-t)$$ and $$\log(2-t)$$.
  • There are discussions about evaluating integrals involving the dilogarithm function and harmonic numbers, with participants attempting to derive relationships and sums related to these functions.
  • One participant mentions a specific integral involving the dilogarithm and proposes a series expansion to tackle it.
  • Another participant attempts to solve an Euler sum related to harmonic numbers and discusses the integration of logarithmic functions.

Areas of Agreement / Disagreement

Participants express various approaches and techniques for evaluating the integral, but no consensus is reached on a definitive solution or method. Multiple competing views and methods remain present throughout the discussion.

Contextual Notes

The discussion includes complex mathematical expressions and transformations that may depend on specific assumptions or definitions, such as the nature of the logarithm and the convergence of series involved. Some steps in the derivations are left unresolved, and the implications of certain identities are not fully explored.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Here is an integral that I seen in another forum

$$\int^1_0 \frac{\log(x)\log(x+1)}{1-x} \approx -0.5 $$

That was a value return by W|A . This thread will be dedicated to try to solve the integral . Any ideas will always be welcomed .

The integral might require some dilogarithm identities . The first step might be integration by parts .
 
Last edited:
Physics news on Phys.org
ZaidAlyafey said:
Here is an integral that I seen in another forum

$$\int^1_0 \frac{\log(x)\log(x+1)}{1-x} \approx -0.5 $$

That was a value return by W|A . This thread will be dedicated to try to solve the integral . Any ideas will always be welcomed .

The integral might require some dilogarithm identities . The first step might be integration by parts .
Looking at the dilogarithms I am lead to ask if the "log" operator is base 10 or e?

-Dan
 
It is a based e logarithm . In complex analysis we always assume $$\log$$ to be the natural logarithm , it looks better than $$\ln \,\, $$ (Cool).
 
Ok , I tried integration by parts

$$\int^1_0 \frac{\log(x) \log(1-x)}{1+x}\, dx +\int^1_0 \frac{\log(1+x) \log(1-x)}{x}\, dx$$

The first integral

I might start by the following

$$\int^1_0 \frac{x^{a-1}(1-x)^{b-1}}{1+x} = \int^1_0 \left( \sum_{n \geq 0 }(-x)^n \right) x^{a-1}(1-x)^{b-1} \, dx $$$$\sum_{n \geq 0 }(-1)^n \left( \int^1_0 x^{n+a-1}(1-x)^{b-1} \, dx \right) $$$$\int^1_0 \frac{x^{a-1}(1-x)^{b-1}}{1+x} =\Gamma(b) \sum_{n \geq 0 }(-1)^n \frac{\Gamma(n+a)}{\Gamma(n+a+b)} = \phi (a,b)$$

$$\int^1_0 \frac{x^{a-1} (1-x)^{b-1} \log(x) \log(1-x) }{1+x} = \frac{\partial }{\partial a} \left( \frac{\partial}{\partial b} \phi (a,b) \right)$$

$$\int^1_0 \frac{\log(x) \log(1-x) }{1+x} = \frac{\partial \phi (1,1) }{\partial a \, \partial b} $$

Our best bet is to find the sum

$$\sum_{n \geq 0 }(-1)^n \frac{\Gamma(n+a)}{\Gamma(n+a+b)}$$
 
ZaidAlyafey said:
$$I= \int^1_0 \frac{\log(x)\log(x+1)}{1-x}\, dx $$

I have got a possibly better idea

let $$x = 1-t $$

$$I=\int^1_0 \frac{\log(1-t)\log(2-t)}{t}\, dt = \int^1_0 \frac{\log(1-t)\left ( \log(1-\frac{t}{2}) + \log(2) \right)}{t}\, dt $$

[Math]I=\int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t} \, dt +\log(2)\int^1_0 \frac{\log(1-t)}{t}\, dt $$

[Math]I=\int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t} \, dt -\log(2) \text{Li}_2(1) = \int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t}- \frac{\pi^2}{6} \log(2)$$

The next step might be to evaluate

$$\int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t} \, dt $$
 
ZaidAlyafey said:
Here is an integral that I seen in another forum

$$\int^1_0 \frac{\log(x)\log(x+1)}{1-x} \approx -0.5 $$

That was a value return by W|A . This thread will be dedicated to try to solve the integral . Any ideas will always be welcomed .

The integral might require some dilogarithm identities . The first step might be integration by parts .

Integrals of this type are analized in...

http://www.mathhelpboards.com/f49/integrals-natural-logarithm-5286/#post24247

... and in particular for an analytic function...

$$f(x) = \sum_{k=0}^{\infty} a_{k}\ x^{k}\ (1)$$... the following formula holds...

$$\int_{0}^{1} f(x)\ \ln^{n} x\ dx = \sum_{k=0}^{\infty} a_{k}\ \int_{0}^{1} x^{k}\ \ln^{n} x\ dx = (-1)^{n} n!\ \sum_{k=0}^{\infty} \frac{a_{k}}{(k+1)^{n+1}}\ (2) $$

In Your case is $f(x)= \frac{\ln (1+x)}{1-x}$ and is...

$$\frac{\ln (1+x)}{1-x} = x + \frac{x^{2}}{2} + \frac{5\ x^{3}}{6} + \frac{7\ x^{4}}{12} + \frac{47\ x^{5}}{60} + \frac{37\ x^{6}}{60} + \frac{319\ x^{7}}{420} + \frac{533\ x^{8}}{540} + ...\ (3)$$

... so that is...

$$\int_{0}^{1} \frac{\ln (1+x)}{1-x}\ \ln x\ dx = - \frac{1}{4} - \frac{1}{18} - \frac{5}{96} - \frac{7}{300} - \frac{47}{2160} - \frac{37}{2940} - \frac{319}{26680} - \frac{533}{43740} - ...\ (4)$$

Kind regards

$\chi$ $\sigma$
 
In the previous post we got the following integral

$$\int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t} \, dt $$

After integration by parts we get

$$\int^1_0 \frac{\log(1-t)\log(1-\frac{t}{2})}{t} \, dt = \frac{\pi^2}{6} \log(2) -\int^1_0 \frac{\text{Li}_2(x)}{2-x}\, dx$$

Adding the results together we get $$\int^1_0 \frac{\log(x) \log(1+x)}{1-x}\, dx =\int^1_0 \frac{\text{Li}_2(x)}{x-2}\, dx $$
 
$$\int^1_0 \frac{\text{Li}_2(x)}{x-2}\, dx $$

$$\frac{-1}{2} \int^1_0 \frac{\text{Li}_2(x)}{1-\frac{x}{2}}\, dx $$

$$\frac{-1}{2}\sum_{k\geq 0} \int^1_0 x^k \text{Li}_2(x)\, dx $$

$$\frac{-1}{2}\sum_{k\geq 0} \sum_{n\geq 1}\frac{1}{2^k n^2} \int^1_0 x^{k+n} dx $$

$$\frac{-1}{2}\sum_{k\geq 0} \sum_{n\geq 1}\frac{1}{2^k}\frac{1}{n^2(n+k+1)} $$

$$\frac{-1}{2}\sum_{k\geq 0}\frac{1}{2^k} \sum_{n\geq 1}\frac{1}{n^2(k+1)}+\frac{(k+1)}{n(k+1)^2(n+k+1)} $$

$$\frac{-1}{2}\sum_{k\geq 0}\frac{1}{2^k} \sum_{n\geq 1}\frac{1}{n^2(k+1)}\,\,+\,\,\frac{1}{2}\sum_{k\geq 0}\frac{1}{2^k} \sum_{n\geq 1}\frac{(k+1)}{n(k+1)^2(n+k+1)} $$

$$\frac{-\zeta(2)}{2}\sum_{k\geq 0}\frac{1}{2^k(k+1)}\,\, +\,\, \frac{1}{2}\sum_{k\geq 0}\frac{1}{2^k(k+1)^2 } \sum_{n\geq 1}\frac{(k+1)}{n(n+k+1)} $$

$$-\zeta(2) \log(2) +\sum_{k\geq 0}\frac{\psi(k+2) + \gamma}{2^{k+1}(k+1)^2 } $$

$$-\zeta(2) \log(2) +\sum_{k\geq 0}\frac{H_{k+1}}{2^{k+1}(k+1)^2 } $$

$$-\zeta(2) \log(2) +\sum_{k\geq 1}\frac{H_{k}}{2^{k}k^2 } $$

Last step is solve the Euler sum

$$\sum_{k\geq 1}\frac{H_{k}}{2^{k}k^2 } $$
 
In the previous post I used the following relation

$$\psi(n) = H_{n-1}-\gamma$$

Proof

By definition we have

$$\psi(n) = -\gamma +\sum_{k\geq 0}\frac{1}{k+1}-\frac{1}{k+n} $$

Since $n$ is an integer we can do the following

$$\sum_{k\geq 0}\frac{1}{k+n} = \sum_{k \geq n}\frac{1}{k} $$

$$\psi(n) = -\gamma +\sum_{k\geq 1}\frac{1}{k}- \sum_{k \geq n}\frac{1}{k} = -\gamma + \sum_{k=1}^{n-1}\frac{1}{k} $$

Now since harmonic numbers are defined as follows

$$\sum_{k=1}^{n}\frac{1}{k} = H_n$$

The proof is complete $$\square $$.
 
  • #10
An attempt to solve the Euler sum

$$\sum_{k\geq 1} \frac{H_k}{2^k k^2}$$

Rather we will try to generalize a little bit

$$\sum_{k\geq 1} \frac{H_k}{ k^2} x^k $$

Start by the following

$$\sum_{k\geq 1} H_k \, x^k = -\frac{\log(1-x)}{1-x}$$

$$\sum_{k\geq 1} H_k \, x^{k-1} = -\frac{\log(1-x)}{x(1-x)} = - \frac{\log(1-x)}{x}- \frac{\log(1-x)}{1-x}$$

Integrating both sides we have

$$\sum_{k\geq 1} \frac{H_k}{k} \, x^{k} = \text{Li}_2(x)+\frac{\log^2(1-x)}{2}$$

$$\sum_{k\geq 1} \frac{H_k}{k} \, x^{k-1} = \frac{\text{Li}_2(x)}{x}+\frac{1}{2}\frac{\log^2(1-x)}{x}$$

Integrating again we obtain

$$\sum_{k\geq 1} \frac{H_k}{k^2} \, x^{k} = \text{Li}_3(x)+\frac{1}{2} \int^x_0 \frac{\log^2(1-t)}{t}\, dt$$

A further attempt will be in the next post .
 
  • #11
$$\int^x_0 \frac{\log^2(1-t)}{t}\, dt $$

Integrating by parts we get the following

$$\int^x_0 \frac{\log^2(1-t)}{t}\, dt = - \log(1-x) \text{Li}_2(x) -\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt $$

Now we are left with the following integral

$$\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt = \int^{1}_{1-x} \frac{\text{Li}_2 (1-t)}{t} \, dt $$

$$\int^{1}_{1-x} \frac{\frac{\pi^2}{6} -\text{Li}_2(t) - \log(1-t) \log(t)}{t} \, dt $$

$$ -\frac{\pi^2}{6}\log(1-x)- \int^{1}_{1-x} \frac{\text{Li}_2(t)}{t}\,dt -\int^{1}_{1-x}\frac{ \log(1-t) \log(t)}{t} \, dt $$

The first integral

  • $$\int^{1}_{1-x} \frac{\text{Li}_2(t)}{t}\,dt =\text{Li}_3(1)-\text{Li}_3(1-x) $$

The second integral by parts we obtain

  • $$ \int^{1}_{1-x}\frac{ \log(1-t) \log(t)}{t} =\text{Li}_3(1) +\log(1-x)\text{Li}_2(1-x)-\text{Li}_3(1-x) $$
Collecting the results together we obtain $$\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt =-\frac{\pi^2}{6}\log(1-x)-\text{Li}_2(1-x) \log(1-x)+2\, \text{Li}_3(1-x)- 2 \zeta(3) $$Hence we solved the integral $$\int^x_0 \frac{\log^2(1-t)}{t}\, dt = - \log(1-x) \text{Li}_2(x) +\frac{\pi^2}{6}\log(1-x)+\text{Li}_2(1-x) \log(1-x)-2\, \text{Li}_3(1-x)+ 2 \zeta(3) $$

So we have got our Harmonic sum $$\sum_{k\geq 1} \frac{H_k}{k^2} \, x^{k} = \text{Li}_3(x)+\frac{1}{2} \left( - \log(1-x) \text{Li}_2(x) +\frac{\pi^2}{6}\log(1-x)+\text{Li}_2(1-x) \log(1-x)-2\, \text{Li}_3(1-x)+ 2 \zeta(3) \right) $$$$\sum_{k\geq 1} \frac{H_k}{k^2} \, x^{k} = \text{Li}_3(x)-\, \text{Li}_3(1-x)+\, \log(1-x) \text{Li}_2(1-x) +\frac{1}{2}\log(x) \log^2(1-x)+\zeta(3) $$The expression can be further simplified but I will leave it like this
So we finally we got our solution (Whew)
 
  • #12
ZaidAlyafey said:
It is a based e logarithm . In complex analysis we always assume $$\log$$ to be the natural logarithm , it looks better than $$\ln \,\, $$ (Cool).

That's debatable. I think it looks better as ln, and it is clearly less time consuming to write ln :P
 
  • #13
We already proved that

$$\int^1_0 \frac{\log(x) \log(1+x)}{1-x} \, dx = -\zeta(2) \log(2) +\sum_{k\geq 1}\frac{H_{k}}{2^{k}k^2 }$$

We found that

$$\sum_{k\geq 1} \frac{H_k}{k^2} \, x^{k} = \text{Li}_3(x)-\, \text{Li}_3(1-x)+\, \log(1-x) \text{Li}_2(1-x) +\frac{1}{2}\log(x) \log^2(1-x)+\zeta(3)$$

putting $$x =1/2 $$ we get

$$\sum_{k\geq 1} \frac{H_k}{2^k k^2} = -\log(2) \text{Li}_2\left( \frac{1}{2}\right) -\frac{1}{2}\log^3(2)+\zeta(3)$$

$$\sum_{k\geq 1} \frac{H_k}{2^k k^2} = -\log(2) \left( \frac{\pi^2}{12}- \frac{1}{2}\log^2(2) \right) -\frac{1}{2}\log^3(2)+\zeta(3)$$

$$\sum_{k\geq 1} \frac{H_k}{2^k k^2} = -\frac{\pi^2}{12} \log(2)+\zeta(3)$$

$$\int^1_0 \frac{\log(x) \log(1+x)}{1-x} \, dx = -\frac{\pi^2}{6}\log(2) -\frac{\pi^2}{12} \log(2)+\zeta(3)$$

Hence we found the result was seeking for

$$\int^1_0 \frac{\log(x) \log(1+x)}{1-x} \, dx = -\frac{\pi^2}{4}\log(2)+\zeta(3) $$​
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K