High School An odd integer series formula?

Click For Summary
The discussion revolves around a mathematical exploration of a formula connecting the difference between squares of successive integers and the sums of their roots. It presents a sequence of odd integers generated by incrementing values of x and y, demonstrating that the differences between successive results yield odd integers. The relationship is further analyzed through variations of the equation, revealing connections to cubic functions and other mathematical concepts. Participants express curiosity about the uniqueness of this series and its potential links to known integer sequences. The conversation encourages further mathematical inquiry and skill development.
Dennis Plews
Messages
37
Reaction score
4
A few months ago I posted a simple equation that shows an interesting nexus between the difference between the squares of successive integers and the sums of their roots, viz:

Where y = x+1 then (x + y) = (y2 - x2)

Recently I expanded this relationship as follows:

Where n is any integer and y = (x + n), then n(x+y) = (y2 - x2)

Starting with x = 1 and y = 2 and increasing the x and y values by 1 at each iteration, this seems to produce an odd integers sequence as follows:

(1 + 2) = 3 = (4 - 1)
(2 + 3) = 5 = (9 - 4)
(3 + 4) = 7 = (16 - 9)
(4 + 5) = 9 = (25 - 16)
(5 + 6) = 11 = (36 - 25)...

Using the y = (x + n) form with the x value at 1 and increasing y by (x + n) gives a similar result:

1(1 + 2) = 3 = (4 - 1)
2(1 + 3) = 8 = (9 - 1)
3(1 + 4) = 15 = (16 - 1)
4(1 + 5) = 24 = (25 - 1)
5(1 + 6) = 35 = (36 -14)...

The difference between the successive results values being a sequence of odd integers.

Using the y = (x + n) form with the x value at 2 gives a similar result:

1(2 + 3) = 5 = (9 - 4)
2(2 + 4) = 12 = (16 - 4)
3(2 + 5) = 21 = (25 - 4)
4(2 + 6) = 32 = (36 - 4)
5(2 + 7) = 45 = (49 - 4)...

The difference between the successive results values again being a sequence of odd integers.

Not being very sophisticated mathematically I looked through Wikipedia’s integer series page (https://en.wikipedia.org/wiki/Integer_sequence) and found nothing like this series. Fibonacci numbers seem similar. I am curious to learn if this relationship is already known and whether it has any relationship to other known mathematical relationships.
 
Mathematics news on Phys.org
To be frank here, I'm not quite sure what the interesting thing about the relationships that you found is - so if I missed it, please do point it out.

Dennis Plews said:
Starting with x = 1 and y = 2 and increasing the x and y values by 1 at each iteration, this seems to produce an odd integers sequence as follows:

(1 + 2) = 3 = (4 - 1)
(2 + 3) = 5 = (9 - 4)
(3 + 4) = 7 = (16 - 9)
(4 + 5) = 9 = (25 - 16)
(5 + 6) = 11 = (36 - 25)...
Well, if you increased x and y by 1 each, the sum (x+y) increases by 2 for each step, so if u started with an odd value, you will naturally generate a sequence of odd integers.

Dennis Plews said:
The difference between the successive results values being a sequence of odd integers.
Well the difference between successive steps is
##[(y+1)^2 - x^2] - [y^2 - x^2] = 2y + 1##
which naturally forms a sequence of successive odd integers since you're increasing ##y## by 1 each step.
 
  • Like
Likes Dennis Plews
Difference of squares: ##y^2-x^2=(y+x)(y-x)##. Substitute ##y=x+n## to get ##y^2-x^2=(y+x)n##.
 
  • Like
Likes Dennis Plews
Dennis Plews said:
A few months ago I posted a simple equation that shows an interesting nexus between the difference between the squares of successive integers and the sums of their roots, viz:

Where y = x+1 then (x + y) = (y2 - x2)

Recently I expanded this relationship as follows:

Where n is any integer and y = (x + n), then n(x+y) = (y2 - x2)
...
Yes, a little over nine months ago you started such a thread.

In that thread you discussed the equation x + y = y2 - x2 .

I assume you intend the 2 to be used as an exponent here also.

The equation ##\ y = x+n \ ## is equivalent to the equation ##\ y - x=n \ ##.

Multiplying that ##\ y+x\ ## gives ##\ (y - x)(y+x) =n(y+x) \ ##.

This equation has a set of solutions in addition to those for the initial equation. These are the solutions to ##\ y=x\ ##.

Of course, ##\ (y - x)(y+x) =n(y+x) \ ## is the same as ##\ y^2 - x^2 =n(y+x) \ ##.
 
  • Like
Likes Dennis Plews
Let f(x) = x2 .

What you have is variations on f(x+1) - f(x), for integer values of x.

For the case with n, it's essentially a similar difference with a cubic function.
 
I appreciate all of your comments. I have learned something from each and am encouraged to further my math skills.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
738
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K