An optimization problem with Newton's method

Click For Summary

Discussion Overview

The discussion revolves around the application of Newton's method to the function $f(x)=(x-2)^4+(x-2)^5$, focusing on the convergence properties of the method. Participants explore both linear and quadratic convergence rates, seeking to prove these rates and determine the associated constants. The scope includes mathematical reasoning and technical explanations related to iterative methods in numerical analysis.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants observe that applying Newton's method with an initial guess of $x_0=3$ leads to linear convergence with a rate constant of $3/4$.
  • Others propose an alternative iterative method defined as $x_{k+1}=x_k-4f(x_k)/f'(x_k)$, suggesting it should converge more rapidly.
  • Participants discuss how to demonstrate the quadratic convergence of the new method and determine its rate constant.
  • There is a focus on defining $\Delta x_k$ as the difference between $x_k$ and the actual root, with some participants detailing the mathematical steps involved in the convergence analysis.
  • Some participants question the validity of certain mathematical steps and seek clarification on the meaning of $\mathcal O(y^2)$ in the context of convergence analysis.
  • There is a discussion about the implications of the multiplicity of the root on the convergence rate.
  • One participant confirms that the second method yields a rate constant of $1/4$ based on their expansion of the iterative formula.

Areas of Agreement / Disagreement

Participants generally agree on the application of Newton's method and the exploration of convergence rates, but there are multiple competing views regarding the proofs and the determination of rate constants. The discussion remains unresolved on some aspects, particularly regarding the quadratic convergence of the second method and the exact rate constant.

Contextual Notes

Limitations include unresolved mathematical steps in proving convergence rates and the dependence on the definitions of convergence and the behavior of the function near the root.

i_a_n
Messages
78
Reaction score
0
Apply Newton's method to $f(x)=(x-2)^4+(x-2)^5$ with initial guess $x_0=3$. We can observe that the sequence converges linearly with rate constant $3/4$. Now apply the iterative mathod $x_{k+1}=x_k-4f(x_k)/f'(x_k)$. This method should converge more rapidly for this problem. But how to prove that the new method converges quadratically and determine the rate constant?also, how to do the first part, that is, how to see linear convergence with rate constant 3/4? And how to prove the second part and find the rate constant?
 
Physics news on Phys.org
You should be able to demonstrate that Newton's method leads to:

$\displaystyle x_{k+1}=\frac{3}{4}x_{k}+\frac{7}{16}+\frac{3}{16(4x_{k}-5)}$

and the second method leads to:

$\displaystyle x_{k+1}=\frac{7}{4}+\frac{3}{4(4x_{k}-5)}$
 
ianchenmu said:
Apply Newton's method to $f(x)=(x-2)^4+(x-2)^5$ with initial guess $x_0=3$. We can observe that the sequence converges linearly with rate constant $3/4$. Now apply the iterative mathod $x_{k+1}=x_k-4f(x_k)/f'(x_k)$. This method should converge more rapidly for this problem. But how to prove that the new method converges quadratically and determine the rate constant?also, how to do the first part, that is, how to see linear convergence with rate constant 3/4? And how to prove the second part and find the rate constant?


Let's define $\Delta x_k$ as the difference between $x_k$ and the actual root.
In your case that means that $\Delta x_k = x_k - 2$.

The method is:

$\qquad x_{k+1} = x_k - \dfrac{f(x_k)}{f'(x_k)}$

It follows that:

$\Delta x_{k+1} = \Delta x_k - \dfrac{f(x_k)}{f'(x_k)}$

$\qquad = \Delta x_k - \dfrac{(x_k-2)^4+(x_k-2)^5}{4(x_k-2)^3+5(x_k-2)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4}{4(\Delta x_k)^3} + \mathcal O ((\Delta x_k)^2)$

$\qquad = \Delta x_k - \frac 1 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$

$\qquad = \frac 3 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$

To make this approximately zero, we need to multiply the part that is subtraced by 4.
Note that the factor 4 is the multiplicity of the root.
That way we will get (at least) quadratic convergence.

With this factor 4 we get:

$\Delta x_{k+1} = \Delta x_k - 4 \dfrac{f(x_k)}{f'(x_k)}$

$\qquad = \Delta x_k - 4 \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$

With a first order expansion of the fraction it follows what the quadratic rate constant will be.
 
ILikeSerena said:
Let's define $\Delta x_k$ as the difference between $x_k$ and the actual root.
In your case that means that $\Delta x_k = x_k - 2$.

The method is:

$\qquad x_{k+1} = x_k - \dfrac{f(x_k)}{f'(x_k)}$

It follows that:

$\Delta x_{k+1} = \Delta x_k - \dfrac{f(x_k)}{f'(x_k)}$

$\qquad = \Delta x_k - \dfrac{(x_k-2)^4+(x_k-2)^5}{4(x_k-2)^3+5(x_k-2)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4}{4(\Delta x_k)^3} + \mathcal O ((\Delta x_k)^2)$

$\qquad = \Delta x_k - \frac 1 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$

$\qquad = \frac 3 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$

To make this approximately zero, we need to multiply the part that is subtraced by 4.
Note that the factor 4 is the multiplicity of the root.
That way we will get (at least) quadratic convergence.

With this factor 4 we get:

$\Delta x_{k+1} = \Delta x_k - 4 \dfrac{f(x_k)}{f'(x_k)}$

$\qquad = \Delta x_k - 4 \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$

With a first order expansion of the fraction it follows what the quadratic rate constant will be.

why
$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4}{4(\Delta x_k)^3} + \mathcal O ((\Delta x_k)^2)$?
And where you showed the second method is quadratic convergence and what's the rate constant?
 
ianchenmu said:
why
$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \dfrac{(\Delta x_k)^4}{4(\Delta x_k)^3} + \mathcal O ((\Delta x_k)^2)$?

Do you know what $\mathcal O(y^2)$ means?
If not you can just ignore it and replace each $=$ by $\approx$.When $\Delta x_k$ approaches zero, $(\Delta x_k)^5$ becomes negligible with respect to $(\Delta x_k)^4$.
We can write: $(\Delta x_k)^4+(\Delta x_k)^5 = (\Delta x_k)^4+ \mathcal O((\Delta x_k)^5) = (\Delta x_k)^4( 1 + \mathcal O(\Delta x_k))$.Alternatively, you can do an expansion.

Using $\frac 1 {1+y} = 1 - y + y^2 - ... = 1 - y + \mathcal O(y^2)$

we can expand as follows:

$\qquad \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \frac 1 4 \dfrac{1+\Delta x_k}{1+ \frac 5 4 \Delta x_k}\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 (1+\Delta x_k)(1 - \frac 5 4 \Delta x_k + ...)\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 (1 - \frac 1 4 \Delta x_k + ...)\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$
And where you showed the second method is quadratic convergence and what's the rate constant?

Can you make an expansion similar to the one I just did to the following expression (which was the last)?

$\Delta x_{k+1} = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$
 
Last edited:
ILikeSerena said:
Do you know what $\mathcal O(y^2)$ means?
If not you can just ignore it and replace each $=$ by $\approx$.When $\Delta x_k$ approaches zero, $(\Delta x_k)^5$ becomes negligible with respect to $(\Delta x_k)^4$.
We can write: $(\Delta x_k)^4+(\Delta x_k)^5 = (\Delta x_k)^4+ \mathcal O((\Delta x_k)^5) = (\Delta x_k)^4( 1 + \mathcal O(\Delta x_k))$.Alternatively, you can do an expansion.

Using $\frac 1 {1+y} = 1 - y + y^2 - ... = 1 - y + \mathcal O(y^2)$

we can expand as follows:

$\qquad \Delta x_k - \dfrac{(\Delta x_k)^4+(\Delta x_k)^5}{4(\Delta x_k)^3+5(\Delta x_k)^4}$

$\qquad = \Delta x_k - \frac 1 4 \dfrac{1+\Delta x_k}{1+ \frac 5 4 \Delta x_k}\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 (1+\Delta x_k)(1 - \frac 5 4 \Delta x_k + ...)\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 (1 - \frac 1 4 \Delta x_k + ...)\Delta x_k$

$\qquad = \Delta x_k - \frac 1 4 \Delta x_k + \mathcal O ((\Delta x_k)^2)$

Can you make an expansion similar to the one I just did to the following expression (which was the last)?

$\Delta x_{k+1} = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$

So in your way, for the second method, is the rate constant 1/4? Since
$\Delta x_{k+1} = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$
$\qquad = \Delta x_k - \Delta x_k + \frac 1 4 (\Delta x_k)^2 +\mathcal O ((\Delta x_k)^3)$
 
Last edited:
ianchenmu said:
So in your way, for the second method, is the rate constant 1/4? Since
$\Delta x_{k+1} = \Delta x_k - \dfrac{1+\Delta x_k}{1+\frac 5 4 \Delta x_k} \Delta x_k$
$\qquad = \Delta x_k - \Delta x_k + \frac 1 4 (\Delta x_k)^2 +\mathcal O ((\Delta x_k)^3)$

Yep! ;)
 
ILikeSerena said:
Yep! ;)

Hey I have a similar question may need your help. It's at here:
http://www.mathhelpboards.com/showthread.php?p=15336

You may need to use Taylor series of $f(x_k)$
Thank you!
 
Last edited:

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K