For [itex]x\in\mathbb{R}[/itex] we can set(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\textrm{Ai}(x) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} e^{i\big(\frac{t^3}{3} + tx\big)}dt

[/tex]

If we substitute in place of [itex]x[/itex] a complex parameter [itex]z[/itex] with [itex]\textrm{Im}(z)>0[/itex], the integral will converge on [itex][0,\infty[[/itex], but diverge on [itex]]-\infty,0][/itex]. With [itex]\textrm{Im}(z)<0[/itex] the integral will converge on [itex]]-\infty,0][/itex], but diverge on [itex][0,\infty[[/itex]. The Wikipedia page tells me that a complex analytic version of the Airy function exists, but apparently it cannot be defined simply by substituting a complex variable [itex]z[/itex] into the same integral formula that works for real variables [itex]x[/itex]. How is the analytic continuation of Airy function studied then?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Analytic continuation of Airy function

**Physics Forums | Science Articles, Homework Help, Discussion**