MHB Analytic geometry proof with triangle.

Click For Summary
Point D divides side AC of triangle ABC in a 1:2 ratio, leading to the coordinates D = ((2x + z)/3, 2y/3). To prove the vector equation \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}, a coordinate system is established with B at the origin. The coordinates for points A and C are defined as A = (x, y) and C = (z, 0). The discussion includes inquiries about the calculation of D's x-coordinate, emphasizing the importance of understanding vector representations in analytic geometry. The proof hinges on correctly establishing the coordinates and vector relationships within the triangle.
ghostfirefox
Messages
11
Reaction score
0
Point D divides side AC, of triangle ABC, so that |AD|: |DC| = 1:2. Prove that vectors \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}.
 
Mathematics news on Phys.org
ghostfirefox said:
Point D divides side AC, of triangle ABC, so that |AD|: |DC| = 1:2. Prove that vectors \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}.

Have you made a sketch?
 
You titled this "Analytic geometry proof ..." so I would set up a coordinate system so that the origin is at the vertex "B" of the triangle and the x-axis lies along on side BC. Then B= (0, 0), A= (x, y), and C= (z, 0) for some numbers x, y, and z. Since D lies on AC such that "|AD|:|DC|= 1:2", D= ((2x+ z)/3, 2y/3). Now, what are the vectors \vec{BA}, \vec{BC}. and \vec{BD}?
 
HallsofIvy said:
You titled this "Analytic geometry proof ..." so I would set up a coordinate system so that the origin is at the vertex "B" of the triangle and the x-axis lies along on side BC. Then B= (0, 0), A= (x, y), and C= (z, 0) for some numbers x, y, and z. Since D lies on AC such that "|AD|:|DC|= 1:2", D= ((2x+ z)/3, 2y/3). Now, what are the vectors \vec{BA}, \vec{BC}. and \vec{BD}?

I have a question how you calculated the x coordinate of point D?
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
985
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K