MHB Analytic geometry proof with triangle.

Click For Summary
Point D divides side AC of triangle ABC in a 1:2 ratio, leading to the coordinates D = ((2x + z)/3, 2y/3). To prove the vector equation \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}, a coordinate system is established with B at the origin. The coordinates for points A and C are defined as A = (x, y) and C = (z, 0). The discussion includes inquiries about the calculation of D's x-coordinate, emphasizing the importance of understanding vector representations in analytic geometry. The proof hinges on correctly establishing the coordinates and vector relationships within the triangle.
ghostfirefox
Messages
11
Reaction score
0
Point D divides side AC, of triangle ABC, so that |AD|: |DC| = 1:2. Prove that vectors \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}.
 
Mathematics news on Phys.org
ghostfirefox said:
Point D divides side AC, of triangle ABC, so that |AD|: |DC| = 1:2. Prove that vectors \vec{BD} = 2/3 \vec{BA} + 1/3 \vec{BC}.

Have you made a sketch?
 
You titled this "Analytic geometry proof ..." so I would set up a coordinate system so that the origin is at the vertex "B" of the triangle and the x-axis lies along on side BC. Then B= (0, 0), A= (x, y), and C= (z, 0) for some numbers x, y, and z. Since D lies on AC such that "|AD|:|DC|= 1:2", D= ((2x+ z)/3, 2y/3). Now, what are the vectors \vec{BA}, \vec{BC}. and \vec{BD}?
 
HallsofIvy said:
You titled this "Analytic geometry proof ..." so I would set up a coordinate system so that the origin is at the vertex "B" of the triangle and the x-axis lies along on side BC. Then B= (0, 0), A= (x, y), and C= (z, 0) for some numbers x, y, and z. Since D lies on AC such that "|AD|:|DC|= 1:2", D= ((2x+ z)/3, 2y/3). Now, what are the vectors \vec{BA}, \vec{BC}. and \vec{BD}?

I have a question how you calculated the x coordinate of point D?
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K