MHB Analyze Stability of Mathieu's Equation w/ Perturbation Method

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
The discussion focuses on analyzing the stability of Mathieu's equation using the perturbation method, specifically near the values of δ = 1 and δ = 4 when ε is small. For δ = 1, the solution involves finding a function u(t) that satisfies the equation, leading to a stability condition where the Floquet multiplier φ equals -1, indicating a period of 2T. When δ = 4, the analysis shows that the stability condition changes, requiring the evaluation of higher-order terms in the perturbation expansion. The results suggest that the perturbation method successfully identifies stability characteristics for both values of δ, with implications for the behavior of solutions under small perturbations. Overall, the discussion provides a detailed analytical approach to understanding the stability of Mathieu's equation through perturbation techniques.
Dustinsfl
Messages
2,217
Reaction score
5
For Mathieu's equation
$$
u'' + (\delta + \epsilon\cos 2t)u = 0,
$$
use the perturbation method to analytically determine its stability near $\delta = 1$ and $\delta = 4$ when $\epsilon\ll 1$.

How would I do this using a perturbation method?
 
Physics news on Phys.org
dwsmith said:
For Mathieu's equation
$$
u'' + (\delta + \epsilon\cos 2t)u = 0,
$$
use the perturbation method to analytically determine its stability near $\delta = 1$ and $\delta = 4$ when $\epsilon\ll 1$.

How would I do this using a perturbation method?

If we take $\delta = 1$, we have $u'' + (1 + \epsilon\cos 2t)u = 0$. I need to find a $u(t) = u_1(t) + u_2(t)$ such that it satisfies $u_1(t) = 1$, $u_1'(t) = 0$, $u_2(t) = 0$, $u_2'(t) = 1$ and $u$ satisfies $u'' + (1 + \epsilon\cos 2t)u = 0$. Since $\epsilon\ll 1$, can we make $\epsilon = 0$? Because if that was the case, then $u = A\cos t\sqrt{\delta} + B\sin t\sqrt{\delta}$.
 
Am I on the right track and what does this tell me about its stability?

When $\epsilon = 0$, we have $\ddot{u} + \delta u = 0$.
Given that for these two cases $\delta > 0$, $u(t) = A\cos t\sqrt{\delta} + B\sin t\sqrt{\delta}$ which satisfies $u_1(0) = 1$, $\dot{u}_1(0) = 0$, $u_2(0) = 0$, and $\dot{u}_2(0) = 1$ when $u_1 = A\cos t\sqrt{\delta}$ and $u_2 = B\sin t\sqrt{\delta}$.
The period has to be the same as Mathieu's equation of $\pi$.
So then we have
\begin{alignat*}{3}
\phi & = & \frac{1}{2}\left[u_1(T) + \dot{u}_2(T)\right]\\
& = & \frac{1}{2}\left[\cos \pi\sqrt{\delta} + \cos pi\sqrt{\delta}\right]\\
& = & \cos \pi\sqrt{\delta}
\end{alignat*}
For $\delta = 1$, we have $\phi = -1$.
Then $\left.\phi\right|_{\epsilon = 0} = -1$.
By Floquet, at -1, we need a period of $2T$.
$\epsilon\cos 2t$ admits a $2\pi$ periodic solution.
Taking the Taylor series expansion, we obtain
\begin{alignat}{5}
u(t,\epsilon) & = & u_0(t) + \epsilon u_1(t) + \epsilon^2\frac{u_2(t)}{2} + \mathcal{O}(\epsilon^3) & = & 0\notag\\
& = & (\ddot{u}_0 + \epsilon \ddot{u}_1) + [\delta + \epsilon\cos 2t](u_0 + \epsilon u_1 +\cdots) & = & 0\\
& = & (\ddot{u}_0 + \epsilon \ddot{u}_1) + \delta u_0 + \epsilon\delta u_1 + \epsilon\cos (2t) u_0 + \cdots & = & 0\notag\\
& = & (u_0 + \delta u_0) + \epsilon(\ddot{u}_1 + \delta u_1 + \cos (2t) u_0) + \cdots & = & 0\notag
\end{alignat}
We would need
\begin{alignat*}{3}
\ddot{u}_0 + \delta u_0 & = & 0\\
\ddot{u}_1 + \delta u_1 & = & -\cos (2t)u_0
\end{alignat*}
Now, let's expand $\delta$ by its Taylor series.
$$
\delta(\epsilon) = \underbrace{\delta_0}_{= 1} + \epsilon\delta_1 + \mathcal{O}(\epsilon^2)
$$
So $\delta$ can be expand in (1).
\begin{alignat*}{3}
(\ddot{u}_0 + \epsilon \ddot{u}_1 + \mathcal{\epsilon^2}) + [(\delta_0 + \epsilon\delta_1 + \mathcal{O}(\epsilon^2)) + \epsilon\cos 2t](u_0 + \epsilon u_1 +\mathcal{O}(\epsilon^2)] & = & 0\\
(\ddot{u}_0 + \delta_0 u_0) + \epsilon(\ddot{u}_1 + \delta_0 u_1 + \cos (2t)u_0 + \delta_1 u_0) + \cdots & = & 0
\end{alignat*}
Since $\delta_0 = 1$, we have
\begin{alignat*}{3}
\ddot{u}_0 + u_0 & = & 0\\
\ddot{u}_1 + u_1 & = & -\cos (2t)u_0 - \delta_1 u_0\\
\vdots & & \vdots
\end{alignat*}
$u_0 = c_1\cos t + c_2\sin t$ which is $2\pi$ periodic and this satisfies $\ddot{u}_0 + u_0 = 0$.
Then $\ddot{u}_1 + u_1 = -\cos (2t)[c_1\cos t + c_2\sin t] - \delta_1[c_1\cos t + c_2\sin t]$.
$$
\ddot{u}_1 + u_1 = -\frac{1}{2}c_1[\cos t + \cos 3t] - \frac{1}{2}c_2[\sin 3t - \sin t] - \delta_1 c_1\cos t - \delta_1 c_2\sin t
$$
After using $\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ and $\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)],$
we must suppress resonance.
So we have to focus on the $\sin t$ and $\cos t$ terms
$$
\ddot{u}_1 + u_1 = \sin t\left[\frac{1}{1}c_2 - \delta_1 c_2\right] + \cos t\left[-\frac{1}{2}c_1 - \delta_1 c_2\right] + \text{the rest}
$$
Then we must have
\begin{alignat*}{3}
c_2\left[\frac{1}{2} - \delta_1\right] & = & 0\\
c_1\left[\frac{1}{2} + \delta_1\right] & = & 0
\end{alignat*}
Therefore, $\delta_1 = \pm\frac{1}{2}$.
From the above, we have
$$
\delta(\epsilon) = 1 + \frac{1}{2}\epsilon + \mathcal{O}(\epsilon^3)
$$
and
$$
\delta(\epsilon) = 1 - \frac{1}{2}\epsilon + \mathcal{O}(\epsilon^3).
$$
 
Last edited:
At the bottom, what do I need $\delta_2$ to be?When $\delta = 4$, $\phi = 1$.
By Floquet, at 1, we need a period of $T$.
\begin{alignat*}{3}
\ddot{u}_0 + 4u_0 & = & 0\\
\ddot{u}_1 + 4u_1 & = & -\delta_1u_0 - u_0\cos 2t\\
\ddot{u}_2 + 4u_2 & = & -\delta_1u_1 - \delta_2u_0 - u_1\cos 2t
\end{alignat*}
Then $u_0 = a\cos 2t + b\sin 2t$.
Therefore, we have $\ddot{u}_1 + 4u_1 = -\delta_1a\cos 2t - \delta_1b\sin 2t - \frac{a}{2}\cos 4t - \frac{a}{2} - \frac{b}{2}\sin 4t - \frac{b}{2}$.
$$
-\delta_1a = 0\quad\text{and}\quad -\delta_1b = 0\quad\Rightarrow\quad\delta_1 = 0
$$
So $\ddot{u}_1 + 4u_1 = - \frac{a}{2}\cos 4t - \frac{a}{2} - \frac{b}{2}\sin 4t - \frac{b}{2}$.
Letting
$$
u_1 = \sum_{j = 0}^{\infty}c_j\sin it + d_j\cos it.
$$
Then $u_1 = \frac{a}{24}\cos 4t - \frac{a}{8} + \frac{b}{24}\sin 4t$.
We have that
\begin{alignat*}{3}
\ddot{u}_2 + 4u_2 & = & -\delta_1\left(\frac{b}{16}\sin3t + \frac{a}{16}\cos 3t\right) - \delta_2a\cos t - \delta_2b\sin t - \frac{b}{32}\sin t - \frac{b}{32}\sin 5t\\
& & - \frac{a}{32}\cos t - \frac{a}{32}\cos 5t\\
& = & - \delta_2a\cos t - \delta_2b\sin t - \frac{b}{32}\sin t - \frac{b}{32}\sin 5t - \frac{a}{32}\cos t - \frac{a}{32}\cos 5t
\end{alignat*}
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
3K