Analyzing the Convergence of a Geometric Series

  • Context: Undergrad 
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
SUMMARY

The forum discussion centers on the convergence of the series ##\displaystyle \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}##, which converges to ##\log(2)## as confirmed by WolframAlpha. Participants explore analytical methods to derive this result, including the power series expansion of ##\log(1+x)## and the differentiation of series. Key insights include recognizing the relationship between the series and the logarithmic function, as well as determining the constant of integration through initial conditions.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with power series expansions, particularly for logarithmic functions
  • Knowledge of differentiation techniques applied to series
  • Basic calculus, including integration and initial conditions
NEXT STEPS
  • Study the power series expansion of ##\log(1+x)## and its applications
  • Learn about the properties of convergence in infinite series
  • Explore differentiation of series and its implications for convergence
  • Investigate the method of integrating series to find constants of integration
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in series convergence and logarithmic functions.

Mr Davis 97
Messages
1,461
Reaction score
44
I have the following series that I came up with in doing a problem: ##\displaystyle \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}##. I looked at WolframAlpha and it says that this series converges to ##\log (2)##. Is it possible to figure this out analytically?
 
Physics news on Phys.org
Mr Davis 97 said:
I have the following series that I came up with in doing a problem: ##\displaystyle \sum_{n=0}^{\infty} \frac{1}{2^{n+1}(n+1)}##. I looked at WolframAlpha and it says that this series converges to ##\log (2)##. Is it possible to figure this out analytically?
As the result involves the logarithm, we first have to find a way to express the logarithm by a series. Which one do you chose? If you define the logarithm otherwise, there will probably a bit more work to do.
 
fresh_42 said:
As the result involves the logarithm, we first have to find a way to express the logarithm by a series. Which one do you chose? If you define the logarithm otherwise, there will probably a bit more work to do.
Well, suppose that I had no idea that the answer turned out to be ##\log 2##. Would there be any way for me to proceed?
 
Pattern recognition and a slightly more general problem:

use ## p \in (0,1)## instead of ##\frac{1}{2}##

what happens if you differentiate the series?
 
Mr Davis 97 said:
Well, suppose that I had no idea that the answer turned out to be ##\log 2##. Would there be any way for me to proceed?
The easiest way is to consider ##\log(1+x)=-\sum_{k=0}^{\infty}\dfrac{(-x)^{k+1}}{k+1}## which is the power series expansion at ##x=0## for ##-1< x \le 1\,.## Then simply take ##x=-\frac{1}{2}\,.## But I think it's fun (and a good exercise) to consider the other proposed ways above, esp. what @StoneTemplePython suggested: differentiate ##f(p)=\sum_{k=0}^{\infty}\dfrac{p^{k+1}}{k+1}##.
 
Last edited:
  • Like
Likes   Reactions: mfb
StoneTemplePython said:
Pattern recognition and a slightly more general problem:

use ## p \in (0,1)## instead of ##\frac{1}{2}##

what happens if you differentiate the series?
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.
 
Mr Davis 97 said:
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.

actually you do know the initial conditions are

##
\displaystyle \sum_{n=0}^{\infty} \frac{p^{n+1}}{(n+1)}
##

so when you have

##\frac{1}{1-p} = 1 + p + p^2 + p^3 + ... ##

you then integrate both sides... ignoring the constant of integration for a moment, does the term by term integration of the Right hand side match with your original series? If so, the Left hand side does too -- this allows you to "zero in" on the constant of integration.

- - - -
edit: another simpler thing to notice is that every term in your original series has a ##p## there are no constants...

another edit: changed the original series to make sure the ##p## is in the numerator!
 
Last edited:
Mr Davis 97 said:
That's neat... So if I let ##S## be the desired sum, I found that ##S(p) = \log p + C##. How would I find the constant of integration? I don't know of any initial conditions where ##0 < p < 1##.
What is ##\sum q^k## for ##0<q<1\,##?
 
StoneTemplePython said:
actually you do know the initial conditions are

##
\displaystyle \sum_{n=0}^{\infty} \frac{1}{p^{n+1}(n+1)}
##

so when you have

##\frac{1}{1-p} = 1 + p + p^2 + p^3 + ... ##

you then integrate both sides... ignoring the constant of integration for a moment, does the term by term integration of the Right hand side match with your original series? If so, the Left hand side does too -- this allows you to "zero in" on the constant of integration.

- - - -
edit: another simpler thing to notice is that every term in your original series has a ##p## there are no constants...
So are you saying that the constant of integration is 0?
 
  • #10
Mr Davis 97 said:
So are you saying that the constant of integration is 0?

You tell me. When you applied the derivative operator to your original series, did any term get mapped to zero? That is the information loss associated with basic differentiation. So what kind of information was lost here?
 
  • #11
StoneTemplePython said:
You tell me. When you applied the derivative operator to your original series, did any term get mapped to zero? That is the information loss associated with basic differentiation. So what kind of information was lost here?
I would suppose none... But if ##S(p) = \log p## then ##S(1/2) = -\log 2## which has a sign error
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K