Angelina Lopez's questions at Yahoo Answers regarding definite integrals

Click For Summary
SUMMARY

The discussion centers on Angelina Lopez's inquiries regarding definite integrals, specifically using the Midpoint Rule for approximation and evaluating integrals of even functions. The first problem involves approximating the integral of f(x) = 1/x from 1 to 3 using four sub-intervals, resulting in M_4 = 3776/3465. The second problem requires finding the integral from -2 to -6 of a continuous even function, leading to the conclusion that the integral equals -106.

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with the Midpoint Rule for numerical integration
  • Knowledge of even functions and their integral properties
  • Basic calculus concepts including integration techniques
NEXT STEPS
  • Study the application of the Midpoint Rule in various contexts
  • Explore properties of even and odd functions in calculus
  • Learn about numerical integration techniques beyond the Midpoint Rule
  • Investigate advanced topics in definite integrals, such as improper integrals
USEFUL FOR

Students studying calculus, educators teaching integral calculus, and anyone seeking to deepen their understanding of numerical integration methods and properties of functions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Calculus integral problems. Please help I would appreciate.?


1. Consider f(x)= 1/x on [1,3]. Use four sub-intervals to approximate the integral from 1 to 3 f(x)dx by using the Midpoint Rule.

2. Suppose f(x) is a continuous even function and that the integral from 0 to 6 f(x)dx=96 and the integral from 0 to -2 f(x)dx =10. Find the integral from -2 to -6 f(x)dx.

I have posted a link there to this thread so the OP can see my work.
 
Physics news on Phys.org
Hello Angelina Lopez,

1.) The Midpoint Rule is the approximation $$\int_a^b f(x)\,dx\approx M_n$$ where:

$$M_n=\frac{b-a}{n}\left(f\left(\frac{x_0+x_1}{2} \right)+f\left(\frac{x_1+x_2}{2} \right)+\cdots+f\left(\frac{x_{n-1}+x_n}{2} \right) \right)$$

In our case, we have:

$$a=1,\,b=3,\,n=4,\,f(x)=\frac{1}{x},\,x_k=a+\frac{b-a}{n}k=\frac{k+2}{2}$$

Hence:

$$\frac{x_{k-1}+x_k}{2}=\frac{\dfrac{(k-1)+2}{2}+\dfrac{k+2}{2}}{2}=\frac{2k+3}{4}$$

and so:

$$f\left(\frac{x_{k-1}+x_k}{2} \right)=\frac{4}{2k+3}$$

Thus:

$$M_4=\frac{3-1}{4}\sum_{k=1}^4\left(\frac{4}{2k+3} \right)=2\sum_{k=1}^4\left(\frac{1}{2k+3} \right)$$

$$M_4=2\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+ \frac{1}{11} \right)=\frac{3776}{3465}$$

2.) We are given:

(1) $$f(-x)=f(x)$$

(2) $$\int_0^6 f(x)\,dx=96$$

(3) $$\int_0^{-2} f(x)\,dx=10$$

and we are asked to find:

$$\int_{-2}^{-6} f(x)\,dx$$

From (1) and (2) we know:

$$\int_{-6}^{0} f(x)\,dx=96$$

which we may write as:

$$\int_{-6}^{-2} f(x)\,dx+\int_{-2}^{0} f(x)\,dx=96$$

Using $$\int_a^b g(x)\,dx=-\int_b^a g(x)\,dx$$ this becomes:

$$-\int_{-2}^{-6} f(x)\,dx-\int_{0}^{-2} f(x)\,dx=96$$

Using (3), we obtain:

$$-\int_{-6}^{-2} f(x)\,dx-10=96$$

Hence:

$$\int_{-6}^{-2} f(x)\,dx=-106$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K