Angle of acceleration in non-uniform circular motion

Click For Summary
SUMMARY

The discussion focuses on calculating the angle of acceleration in non-uniform circular motion, specifically using the formula ##\tan^{-1}(\frac{32}{3.35})## to find the angle between radial and total acceleration. Participants clarify that ##\tan^{-1}## and arctan are interchangeable notations. The angle of approximately 5.98 degrees is derived from the ratio of radial acceleration (32) to tangential acceleration (3.35). The discussion also highlights the use of the gamma symbol for degrees in textbook solutions, which may cause confusion.

PREREQUISITES
  • Understanding of trigonometric functions, specifically inverse tangent (arctan).
  • Familiarity with concepts of radial and tangential acceleration in circular motion.
  • Knowledge of vector addition in physics.
  • Ability to interpret and analyze diagrams representing forces and accelerations.
NEXT STEPS
  • Study the derivation of acceleration components in non-uniform circular motion.
  • Learn about vector addition techniques in physics, particularly in circular motion contexts.
  • Explore the implications of using different symbols for angles in physics problems.
  • Investigate the relationship between radial and tangential acceleration in various motion scenarios.
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of non-uniform circular motion and the application of trigonometric functions in calculating angles of acceleration.

member 731016
Homework Statement
Pls see below
Relevant Equations
Pls see below
For (c),
1676794421345.png

Solution is
1676794442239.png

Can someone please explain how they calculated that angle? I thought they would do ##arc\tan (\frac {32}{3.35})##

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
View attachment 322504
Can someone please explain how they calculated that angle? I thought they would do ##arc\tan (\frac {32}{3.35})##

Many thanks!
##\tan^{-1}## is one way of writing ##\arctan##.
Or is it the 3.35/32 instead of the other way up that bothers you?
 
  • Like
Likes   Reactions: member 731016 and MatinSAR
haruspex said:
##\tan^{-1}## is one way of writing ##\arctan##.
Or is it the 3.35/32 instead of the other way up that bothers you?
The OP seems to be unaware that the trig function inverses can be written in two ways: e.g., ##\tan^{-1}(x)## is the same as arctan(x), and similar for the other circular trig functions.

On another note, does anyone recognize the symbol that follows 5.98 in the solution? Evidently it means "degrees" since ##\tan^{-1}(\frac{3.35}{32.0}) \approx 5.98## (degrees), but the symbol used looks like ##\gamma## to me, which I've never seen used to signify degrees .
 
  • Like
Likes   Reactions: member 731016 and MatinSAR
haruspex said:
##\tan^{-1}## is one way of writing ##\arctan##.
Or is it the 3.35/32 instead of the other way up that bothers you?
Thank you for your reply @haruspex!

Sorry I should been more accurate - it is the 3.35/32 that is bothering me

Many thanks!
 
Mark44 said:
The OP seems to be unaware that the trig function inverses can be written in two ways: e.g., ##\tan^{-1}(x)## is the same as arctan(x), and similar for the other circular trig functions.

On another note, does anyone recognize the symbol that follows 5.98 in the solution? Evidently it means "degrees" since ##\tan^{-1}(\frac{3.35}{32.0}) \approx 5.98## (degrees), but the symbol used looks like ##\gamma## to me, which I've never seen used to signify degrees .
Thank you for your reply @Mark44!

Sorry I was actually aware that ##tan^{-1} = arctan##. However, I was not sure why they wrote 3.35\32 instead 32\3.35 inside the tan function.

Also yeah that textbook solutions dose use the gamma symbol for degrees for some reason.

Many thanks!
 
Callumnc1 said:
Thank you for your reply @haruspex!

Sorry I should been more accurate - it is the 3.35/32 that is bothering me

Many thanks!
The 32 acceleration is radial. The angle quoted is that between the radial acceleration and the total acceleration. The cosine of that angle would be radial/total and its tangent is tangential/radial.
 
  • Like
Likes   Reactions: member 731016
haruspex said:
The 32 acceleration is radial. The angle quoted is that between the radial acceleration and the total acceleration. The cosine of that angle would be radial/total and its tangent is tangential/radial.
Thank you for reply @haruspex !

When I draw a diagram of the accelerations acting on the mass when ##\theta = 20~degrees##
1676838074204.png

Then draw a vector addition diagram to get the total acceleration,
1676838284246.png

I see that ##\tan\theta = \frac{a_c}{a_t} = \frac{32}{3.35}##

I know this is bad practice to change symbols when solving a problem, but if I add an angle phi (use to represent tangent/radial acceleration) ,
1676838541321.png

Then I can see that ##\tan\phi = \frac{a_t}{a_c}##. I think I'm now not sure how they got acceleration to be below the cord at 5.89 degrees.
1676838800945.png

Many thanks!
 
Callumnc1 said:
View attachment 322528
Many thanks!
The angle of a line "below the cord" means the angle between the cord and the line, measured on the underside of the cord. In your last diagram above, that is the angle between the pale brown cord and the black total acceleration vector, measured anticlockwise from the cord.
 
  • Like
Likes   Reactions: member 731016
haruspex said:
The angle of a line "below the cord" means the angle between the cord and the line, measured on the underside of the cord. In your last diagram above, that is the angle between the pale brown cord and the black total acceleration vector, measured anticlockwise from the cord.
Oh thank you for your help @haruspex! I see it now :)
1676846089139.png
 

Attachments

  • 1676846016881.png
    1676846016881.png
    5.9 KB · Views: 124

Similar threads

Replies
55
Views
3K
Replies
11
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
809
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
987
  • · Replies 9 ·
Replies
9
Views
2K
Replies
11
Views
3K