MHB Angles & Diagonals of a Pentagon: Explained

  • Thread starter Thread starter highmath
  • Start date Start date
  • Tags Tags
    Reading
highmath
Messages
35
Reaction score
0
Can somebody simply this sentence:
there are relationships among the angles of a pentagon and its diagonals. For example, the ratio of distinct interior angles to distinct diagonals is exactly 1 : 2.
?
Can somebody explain it in simple words, please...
 
Mathematics news on Phys.org
The correct text is:
there are relationships among the angles of a pentagon and its diagonals. For example, the ratio of distinct interior angles to distinct diagonals is exactly 1 : 1.
?
Can somebody explain it to me?
 
What they are saying is the the number of distinct interior angles and the number of distinct diagonals is the same:

4-simplex_t0.svg


There are 5 of each, and so for each interior angle there is a distinct diagonal (this is not true for all polygons, only pentagons).
 
What is distinct diagonals?
Can you color them in the picture or put letters or ect...
So I see it.
 
highmath said:
What is distinct diagonals?
Can you color them in the picture or put letters or ect...
So I see it.

The diagonals are the lines within the pentagon, making the "star" within.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top