MHB Angular and Linear Speed....Part 1

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Angular Linear
AI Thread Summary
The discussion focuses on calculating angular and linear speeds based on a wheel's rotation rate and radius. For Part A, the correct angular speed is derived as 50 pi/3 radians/sec, which requires converting revolutions per minute to radians per second by dividing by 60. In Part B, the linear speed of a point on the circumference is calculated as 750 pi cm/sec, while the speed for a point halfway to the center in Part C is 375 pi cm/sec. The confusion arises from the need to convert units properly and apply the correct formulas. Overall, the calculations emphasize the importance of unit conversion in achieving accurate results.
mathdad
Messages
1,280
Reaction score
0
You are given the rate of rotation of a wheel as well as its radius. For A-C, determine the following:

A. The angular speed, in units of radians/sec.

B. The linear speed, in units of cm/sec, of a point on the circumference of the wheel.

C. The linear speed, in cm/sec, of a point halfway between the center of the wheel and the circumference.

I will now post my effort.

Given: 500 rpm; r = 45 cm

Part A

The angular speed formula is w = θ/t.

I know that 1 revolution = 2pi radians.

I need θ.

θ = 500 (2pi radians)

θ = 1,000 pi radians.

w = 1,000 pi radians/sec

Book's answer is [50 pi/3] radians/sec. Something tells me that I needed to convert seconds to minutes. Yes?

Part B

I used the arc length formula, s = θr, as step 1.

s = (1,000 pi radians)(45 cm)

s = 45,000 pi cm = d

The letter d represents the distance in time t in the linear speed formula v = d/t.

v = 45,000 pi cm/sec is my answer.

Book's answer for Part B is 750 pi cm/sec.
Again, I am thinking that the units of conversation needed to be changed. Yes?

Part C

s = θr

s = (1,000 pi radians)(22.5 cm)

The decimal 22.5 came from dividing the radius in half in terms of the instructions for Part C above.

s = 22,500 pi cm = d

v = d/t

v = 22,500 pi cm/sec

Book's answer is 375 pi cm/sec.
 
Last edited:
Mathematics news on Phys.org
A. $$\omega=\frac{\theta}{t}$$

$$\omega=\frac{500\text{ rev}}{1\text{ min}}\cdot\frac{2\pi\text{ rad}}{1\text{ rev}}\cdot\frac{1\text{ min}}{60\text{ s}}=\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}$$

B. $$v=\omega r$$

$$v=\left(\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}\right)\left(45\text{ cm}\right)=750\pi\frac{\text{cm}}{\text{s}}$$

C. $$v=\omega r$$

$$v=\left(\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}\right)\left(\frac{45}{2}\text{ cm}\right)=375\pi\frac{\text{cm}}{\text{s}}$$
 
MarkFL said:
A. $$\omega=\frac{\theta}{t}$$

$$\omega=\frac{500\text{ rev}}{1\text{ min}}\cdot\frac{2\pi\text{ rad}}{1\text{ rev}}\cdot\frac{1\text{ min}}{60\text{ s}}=\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}$$

B. $$v=\omega r$$

$$v=\left(\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}\right)\left(45\text{ cm}\right)=750\pi\frac{\text{cm}}{\text{s}}$$

C. $$v=\omega r$$

$$v=\left(\frac{50\pi}{3}\,\frac{\text{rad}}{\text{s}}\right)\left(\frac{45}{2}\text{ cm}\right)=375\pi\frac{\text{cm}}{\text{s}}$$

I follow everything you did here except for Part A.
Where did 50 pi/3 come from? Don't we multiply 500 rpm by 2 pi radians? Is 500 rpm • 2 pi radians not equal to 1,000 pi radians?
 
RTCNTC said:
I follow everything you did here except for Part A.
Where did 50 pi/3 come from? Don't we multiply 500 rpm by 2 pi radians? Is 500 rpm • 2 pi radians not equal to 1,000 pi radians?

Yes, but we also must divide by 60, and then reduce the fraction. :)
 
Oh boy! I better go back to 5th grade math.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
6
Views
4K
Replies
2
Views
3K
Replies
2
Views
1K
Replies
2
Views
14K
Replies
10
Views
6K
Back
Top