Angular power spectrum dependence in redshift z and k

Click For Summary
SUMMARY

The discussion focuses on the relationship between the angular power spectrum \(C_\ell\) and the 3D power spectrum \(P(k)\), specifically addressing the variables \(z\) and \(z'\) in the context of angular correlation functions. Participants clarify that \(C_\ell\) is derived from \(P(k)\) through integration involving spherical Bessel functions, and that \(P(k)\) does not necessarily represent the linear matter power spectrum but can also relate to temperature power spectra. The confusion surrounding the notation and the transformation between these spectra is a central theme, with references to relevant academic papers and resources.

PREREQUISITES
  • Understanding of angular power spectrum \(C_\ell\)
  • Familiarity with 3D power spectrum \(P(k)\)
  • Knowledge of spherical Bessel functions
  • Basic concepts of redshift and angular correlation functions
NEXT STEPS
  • Study the derivation of \(C_\ell\) from \(P(k)\) using spherical Bessel functions
  • Review the paper "The Angular Power Spectrum of the Cosmic Microwave Background" for foundational concepts
  • Explore Redshift Space Distortions (RSD) and their impact on power spectrum calculations
  • Investigate the orthogonality conditions of Legendre polynomials as they relate to angular spectra
USEFUL FOR

Astronomers, cosmologists, and researchers in astrophysics who are analyzing the relationships between angular and 3D power spectra, particularly in the context of cosmic microwave background studies and redshift phenomena.

fab13
Messages
300
Reaction score
7
Hi,

I wanted to have a precision about a question that has been post on this relation between P(k) and C_l

The author writes the ##C_\ell## like this :

$$C_\ell(z,z') = \int_0^\infty dkk^2 j_\ell(kz)j_\ell(kz')P(k)$$

I don't undertstand the meaning of ##z## and ##z'## : these are not redshift, are they ?

Normally, it should depend of the multipole ##\ell## but how to make the link between these 2 quantities ##z## and ##z'## and multipole ##\ell##.
Moreover, does the ##P(k)## represent systematically the linear matter power spectrum ? or can we add RSD (Redshift Space Distorsions) like Kaiser or alcock-paczynski effects ?

Thanks for your clarifications and explanations.

Regards
Source https://www.physicsforums.com/threads/relationship-between-the-angular-and-3d-power-spectra.993041/
 
Space news on Phys.org
I think there's a mistake there. I suspect the left hand side is not ##C_\ell##, but the angular correlation function, which is a function of the difference between two angles on the sky, with ##z## and ##z'## being unit vectors.

That said, I don't think this is the way things are currently done. Current power spectrum calculations are based on this paper: https://arxiv.org/abs/astro-ph/9603033
 
@kimbyd .Thanks for your quick answer.

I have looked at your paper and notice that passing :
Capture d’écran 2021-04-14 à 22.12.04.png


From what you seem to say, the ##C(\theta)## on the left would represent the angular correlation function, wouldn't it ?

and in the right term member would appear ##C_{\ell}## which would be the Angular Power spectrum ?

If this is the case, How could I express ##C_{\ell}## from ##C(\theta)##.

Your help will be precious, thanks in advance.
 
Equation 10 there is a reversible transformation. The orthogonality condition is described here:
https://en.wikipedia.org/wiki/Legendre_polynomials#Orthogonality_and_completeness

There's a notational difference there, in part driven by the argument being ##x## rather than ##cos(\theta)##, but it shouldn't be too difficult to take a simple example (e.g. ##P_1##), do the integrals manually, and see what the normalization factor needs to be.
 
Just a precision :

in the link that I gave firstly in my post ( https://www.physicsforums.com/threads/relationship-between-the-angular-and-3d-power-spectra.993041 )

Why does the writter say "How to write the 3D power spectrum, P(k), as an integral of the angular power spectrum, C_l ?"

whereas from kimbyd, it is not the direct relation beween angular power spectrum ##C_{\ell}## and matter power spectrum ##P_{k}##

By, the way, could anyone write the complete formula that links these 2 quantities (##C_{\ell}## and ##P_{k}##) ?

I would be grateful since I am a little confused between angualr correlation function and matter power spectrum and spherical Bessel functions.

Any help would be great, I am begin to desperate.

Best regards
 
I don't think ##P(k)## there is the matter power spectrum. It's still the temperature power spectrum, just represented differently.

The relationship between ##P(k)## and ##C_\ell## is that ##C_\ell## results from the intersection of the 3D power spectrum ##P(k)## with the surface of last scattering.

I believe the equation was written above.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K