MHB Ann's question at Yahoo Answers (At most two roots)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Roots
AI Thread Summary
The equation x^4 + 4x + c can have at most two real roots based on the analysis of its derivative and the application of Rolle's theorem. If there are three real roots, it leads to a contradiction since the derivative has only one real root at x = -1. When c is positive, Descartes' rule indicates no positive roots and at most two negative roots. If c is negative, there will be one positive and one negative root. The behavior of the function at infinity and its minimum point further supports these findings, confirming the maximum of two real roots.
Mathematics news on Phys.org
Hello Ann,

Suppose there are three real roots $a<b<d$, then all the hypothesis of the Rolle's theorem are satisfied for the function $f(x)=x^4 +4x+c$ on the intervals $[a,b]$ and $[b,d]$ so, there exists $\xi_1\in (a,b)$ and $\xi_2\in (b,d)$ such that $f'(\xi_1)=f'(\xi_2)=0$. But $$f'(x)=4x^3+4=0\Leftrightarrow x^3=-1\Leftrightarrow x=-1\quad\mbox{ (in }\mathbb{R})$$ We get a contradiction: $f'$ has at the 'same tine' only one real root and more than one real roots ($\xi_1\neq \xi_2)$.
 
Fernando Revilla said:
Here is a link to the question:

Show that the equation x^4 +4x+c has at most 2 roots? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
Assume \(c\) is positive Descartes rule of signs tell you this has no positive roots, and changing the signs of the coeficient of the odd power of x shows that it has at most two negative roots.

Now assume \(c\) is negative then Descartes rule of signs shows it has one positive and one negative root.
.
 
Anoher way:

Denoting $g(x)=x^4+4x$, we have $$\lim_{x\to -\infty}g(x)=+\infty,\;\lim_{x\to +\infty}g(x)=+\infty,\;g'(x)=4(x-1)(x^2-x+1)$$ which implies $g$ has an absolute minimum at $(-1,-3)$. The intersection of the grpah of $g(x)$ with the graph of $y=-c$, easily provides the following information: $$\begin{aligned}&c\in (-\infty,0):\mbox{Two real roots (one positive and one negative)}\\&c=0: \mbox{ Two real roots }(x=-\sqrt[3]{4},x=-1)\\&c\in (0,3):\mbox{Two real roots (both negative)}\\&c=3:\mbox{One real roots }(x=-1)\\&c\in (3,+\infty):\mbox{No real roots}\end{aligned}$$ At any rate, and according to the question, it seems that the 'spirit' is to apply the Rolle Theorem (they only ask for the number of roots and not for more information).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top