MHB Ann's question at Yahoo Answers (At most two roots)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Roots
Mathematics news on Phys.org
Hello Ann,

Suppose there are three real roots $a<b<d$, then all the hypothesis of the Rolle's theorem are satisfied for the function $f(x)=x^4 +4x+c$ on the intervals $[a,b]$ and $[b,d]$ so, there exists $\xi_1\in (a,b)$ and $\xi_2\in (b,d)$ such that $f'(\xi_1)=f'(\xi_2)=0$. But $$f'(x)=4x^3+4=0\Leftrightarrow x^3=-1\Leftrightarrow x=-1\quad\mbox{ (in }\mathbb{R})$$ We get a contradiction: $f'$ has at the 'same tine' only one real root and more than one real roots ($\xi_1\neq \xi_2)$.
 
Fernando Revilla said:
Here is a link to the question:

Show that the equation x^4 +4x+c has at most 2 roots? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
Assume \(c\) is positive Descartes rule of signs tell you this has no positive roots, and changing the signs of the coeficient of the odd power of x shows that it has at most two negative roots.

Now assume \(c\) is negative then Descartes rule of signs shows it has one positive and one negative root.
.
 
Anoher way:

Denoting $g(x)=x^4+4x$, we have $$\lim_{x\to -\infty}g(x)=+\infty,\;\lim_{x\to +\infty}g(x)=+\infty,\;g'(x)=4(x-1)(x^2-x+1)$$ which implies $g$ has an absolute minimum at $(-1,-3)$. The intersection of the grpah of $g(x)$ with the graph of $y=-c$, easily provides the following information: $$\begin{aligned}&c\in (-\infty,0):\mbox{Two real roots (one positive and one negative)}\\&c=0: \mbox{ Two real roots }(x=-\sqrt[3]{4},x=-1)\\&c\in (0,3):\mbox{Two real roots (both negative)}\\&c=3:\mbox{One real roots }(x=-1)\\&c\in (3,+\infty):\mbox{No real roots}\end{aligned}$$ At any rate, and according to the question, it seems that the 'spirit' is to apply the Rolle Theorem (they only ask for the number of roots and not for more information).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top