(adsbygoogle = window.adsbygoogle || []).push({}); Another Abstract Algebra Question....

Every symmetry of the cube induces a permutation of the four diagonals connecting the opposite vertices of the cube. This yields a group homomorphism φ from the group G of symmetries of the Cube to S4 (4 is a subscript). Does φ map G onto S4? Is φ 1-1? If not, describe the symmetries in the kernel of φ. Determine the order of G.

So far for this problem I have drawn the cube and the 4 diagonals of the cube. Also I know that the cube has 24 symmetries. Im not sure however how you translate this into a group homomorphism. Does it mean that the group G of symmetries of the Cube contains 24 elements? In which case the order of G would be 24? Thanks for the help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Another Abstract Algebra Question

**Physics Forums | Science Articles, Homework Help, Discussion**