Another trigonometric equality

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary

Discussion Overview

The discussion revolves around a trigonometric equality involving tangent functions. Participants are tasked with proving a specific identity that relates the tangent of angles expressed in degrees, with a focus on manipulating the terms and verifying the equality.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the equation $tan\, x\,+tan\,(x+60)\,-\,tan(60-x)=3tan(3x)$ and asks to prove the identity $tan^2\, x\,+tan^2\,(x+60)\,+\,tan^2(60-x)=9tan^2(3x)+6$.
  • Another participant attempts to provide a solution but notes a correction regarding the third term, suggesting it should be $\tan\left({60-x}\right)$.
  • A subsequent post reiterates the correction about the third term, indicating a collaborative effort to refine the solution presented.

Areas of Agreement / Disagreement

There is no clear consensus on the solution as participants are still in the process of discussing and correcting terms. Multiple viewpoints on the approach to the proof are present.

Contextual Notes

The discussion includes a correction regarding the expression of one of the terms, which may affect the overall proof. The exact steps leading to the proposed equality remain unresolved.

Albert1
Messages
1,221
Reaction score
0
the units of all angles :degree
gien :$tan\, x\,+tan\,(x+60)\,-\,tan(60-x)=3tan(3x)$
prove :$tan^2\, x\,+tan^2\,(x+60)\,+\,tan^2(60-x)=9tan^2(3x)+6$
 
Mathematics news on Phys.org
My solution:

First notice that

i.
$\begin{align*}\small\tan 3x&=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}\\&= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)\\&=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)\\&=\tan x \tan(60-x) \tan (60+x)\end{align*}$

ii.
$\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}-2\tan(60+x)^{\circ}\tan(60-x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60-x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$
 
Last edited:
anemone said:
My solution:

First notice that

i. $\small\tan 3x=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)=\tan x \tan(60-x) \tan (60+x)$

ii. $\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}-2\tan(60+x)^{\circ}\tan(60+x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60+x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$

the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$
 
kaliprasad said:
the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$

Thanks, kali! I will fix it right away!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K