MHB Another trigonometric equality

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trigonometric
AI Thread Summary
The discussion revolves around proving the trigonometric equality involving tangent functions: tan x + tan(x + 60) - tan(60 - x) = 3tan(3x). A proposed solution includes correcting the third term to tan(60 - x). Participants engage in clarifying the equation and ensuring accurate representation of the terms. The conversation highlights the importance of precise notation in trigonometric identities. The thread emphasizes collaborative problem-solving in mathematics.
Albert1
Messages
1,221
Reaction score
0
the units of all angles :degree
gien :$tan\, x\,+tan\,(x+60)\,-\,tan(60-x)=3tan(3x)$
prove :$tan^2\, x\,+tan^2\,(x+60)\,+\,tan^2(60-x)=9tan^2(3x)+6$
 
Mathematics news on Phys.org
My solution:

First notice that

i.
$\begin{align*}\small\tan 3x&=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}\\&= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)\\&=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)\\&=\tan x \tan(60-x) \tan (60+x)\end{align*}$

ii.
$\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60-x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}-2\tan(60+x)^{\circ}\tan(60-x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60-x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60-x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$
 
Last edited:
anemone said:
My solution:

First notice that

i. $\small\tan 3x=\dfrac{\tan x(3-\tan^2 x)}{1-3\tan^2x}= \tan x \left(\dfrac{(\sqrt{3})^2-\tan^2 x}{1^2-(\sqrt{3} \tan x)^2} \right)=\tan x \left(\dfrac{(\sqrt{3}-\tan x)(\sqrt{3}+\tan x)}{(1+\sqrt{3} \tan x)(1-\sqrt{3} \tan x)} \right)=\tan x \tan(60-x) \tan (60+x)$

ii. $\tan 3x=\dfrac{3\tan x-\tan^3 x}{1-3\tan^2x}\rightarrow\,\,\tan^3 x+\tan3x=3\tan x+3\tan^2 x \tan 3x$We are given $\tan x^{\circ}+\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}$

If we rewrite it as $\tan(60+x)^{\circ}-\tan(60+x)^{\circ}=3\tan 3x^{\circ}-\tan x^{\circ}$ and squaring it, we get:

$\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}-2\tan(60+x)^{\circ}\tan(60+x)^{\circ}=9\tan^2 3x^{\circ}+\tan^2 x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}$

Modifying it a bit we get

$\begin{align*}\tan^2 x^{\circ}+\tan^2(60+x)^{\circ}+\tan^2(60+x)^{\circ}&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+2\tan(60+x)^{\circ}\tan(60+x)^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+2\tan^2 x^{\circ}+\dfrac{2\tan 3x^{\circ}}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(\tan^3 x^{\circ}+\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+\dfrac{2(3\tan x^{\circ}+3\tan^2 x^{\circ}\tan 3x^{\circ})}{\tan x^{\circ}}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6+6\tan 3x^{\circ}\tan x^{\circ}-6\tan 3x^{\circ}\tan x^{\circ}\\&=9\tan^2 3x^{\circ}+6\end{align*}$

the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$
 
kaliprasad said:
the 3rd term in a couple of lines should be $\tan\left({60-x}\right)$

Thanks, kali! I will fix it right away!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top