I Anticommutators of the spin-1 representation

  • Thread starter Tony3
  • Start date
1
0
Summary
I need to find a closed form of the anticommutators of the Pauli matrices in the spin-1 representation.
The Pauli matrices of the spin-1 representation are given by: ##T_{1}=\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}##, ##T_{2}=\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}## and ##T_{3}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}##. I need to find what ##\left\{T_{i},T_{j}\right\}## is equal to.
Doing some calculations, I found that ##\left\{T_{1},T_{2}\right\}=i\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}##, ##\left\{T_{1},T_{3}\right\}=\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}##,##\left\{T_{2},T_{3}\right\}=\frac{1}{\sqrt{2}}\begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & -i & 0 \end{pmatrix}##.
Is there a general relation that I can derive from these special relations? I think that I am close, but I can't quite see it.
 

A. Neumaier

Science Advisor
Insights Author
6,716
2,674
What else than the explicit matrices do you expect to get? They are as closed from as you can make it.
 

Want to reply to this thread?

"Anticommutators of the spin-1 representation" You must log in or register to reply here.

Related Threads for: Anticommutators of the spin-1 representation

Replies
8
Views
1K
Replies
0
Views
1K
Replies
4
Views
1K
  • Posted
Replies
4
Views
1K
  • Posted
Replies
2
Views
671
Replies
4
Views
2K
Replies
6
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top