Sparky_
- 227
- 5
shoot, (wasn't being careful) , should have looked up the actual matrix operation -PeterDonis said:Actually, I take that back; you didn't do it entirely correctly in post #22, you just got lucky.
The correct part of what you did in post #22 is this equation:
$$
\frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$
where I have put back the factors of ##1 / \sqrt{2}## on each side to make it clear exactly what we are doing, namely, writing the eigenvalue equation for ##\hat{S}_x## and ##| x_+ \rangle##. But this gives two equations for ##\lambda##, not one: one equation for the upper component of the RHS, the second for the lower component of the RHS. Those equations are
$$
\frac{\hbar}{2} \frac{1}{\sqrt{2}} \left( 0 \times 1 + 1 \times 1 \right) = \lambda \times \frac{1}{\sqrt{2}} \times 1
$$
$$
\frac{\hbar}{2} \frac{1}{\sqrt{2}} \left( 1 \times 1 + 0 \times 1 \right) = \lambda \times \frac{1}{\sqrt{2}} \times 1
$$
Both of these equations give the same value for ##\lambda##, namely ##\hbar / 2##.
Now do the same with the column vector
$$
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
$$
\frac{1}{\sqrt{2}}\begin{pmatrix}
0&\frac{\hbar}{2}\\ \frac{\hbar}{2}&0\end{pmatrix} \begin{pmatrix}
1\\-1\end{pmatrix} = \lambda \frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
2 equations:
$$
\frac{\hbar}{2} \frac{1}{\sqrt{2}} = \frac{\lambda}{\sqrt{2}} \\
-\frac{\hbar}{2} \frac{1}{\sqrt{2}} = -\frac{\lambda}{\sqrt{2}} \\
\lambda = \frac{\hbar}{2}
$$