How Do Engineers Design AntiNoise to Effectively Reduce Ambient Noise?

Click For Summary
SUMMARY

The discussion focuses on the design of anti-noise signals for noise-cancelling headphones, specifically how to effectively reduce ambient noise using mathematical principles. The key equations discussed include AmbientNoise = 100 sin(ω t) and AntiNoise = A sin(ω t + φ), with the goal of achieving a combined amplitude of 20. The challenge lies in selecting the appropriate amplitude A and phase φ to minimize energy consumption while effectively cancelling noise. The discussion also addresses the difficulty of achieving perfect phase opposition and provides a solution for the maximum phase shift δ, governed by the equation sqr(2 − 2 cos(δ)) = 0.2, resulting in δ ≈ 0.2 rad.

PREREQUISITES
  • Understanding of sound wave equations and trigonometric functions
  • Familiarity with noise-cancelling technology principles
  • Knowledge of amplitude and phase in waveforms
  • Basic skills in solving trigonometric equations
NEXT STEPS
  • Study the principles of sound wave interference and cancellation
  • Learn about the mathematical modeling of sound waves using sine functions
  • Explore advanced noise-cancelling algorithms and their implementations
  • Investigate the impact of phase shifts on sound wave interactions
USEFUL FOR

Sound engineers, audio technology developers, and anyone involved in designing or improving noise-cancelling systems will benefit from this discussion.

Decentralized
Messages
2
Reaction score
0
Summary:: AmbientNoise + AntiNoise combined calculation

I am having trouble with this question:
Noise cancelling headphones use both passive (insulated earphones) and active (electronic “anti-noise”) methods to nullify ambient noise. One task of a sound engineer is to design low-energy anti-noise signals that help cancel ambient noise. Consider anti-noise that is to be combined (to cancel) ambient-noise.

AmbientNoise = 100 sin(ω t) Amplitude 100 and frequency ω .
AntiNoise = A sin(ω t + φ) Amplitude A is a positive number. −π < φ ≤ π

1. Choose AntiNoise so the sum AmbientNoise + AntiNoise has a combined amplitude of 20 (much quieter than AmbientNoise). Guess/choose the phase φ that minimizes A (minimum A decreases hearing fatigue and energy consumption).

AmbientNoise = 100 sin(ω t)
AntiNoise = A sin(ω t + φ)
A = ____ φ = _____rad
CombinedSound = ____sin( ____ )

2. It is difficult for AntiNoise to be perfectly out of phase with AmbientNoise (i.e., difficult for φ to be exactly π). Consider AntiNoise = 100 sin(ω t + π + δ). Determine the maximum δ between 0 and π to create a combined noise/anti-noise sound of amplitude 20, i.e.,
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase)
Show δ is governed by the following equation – and solve for δ.

sqr(2 − 2 cos(δ))= 0.2
δ ≈ 0.2 rad ≈ 11.5◦

For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem. We've only learned Asin(x) + Bsin(x) = C sin(x+φ) where C = sqr( A^2 + B^2).

Appreciate your input here.
 
Physics news on Phys.org
Decentralized said:
For the first question, if I want to cancell ambient noise with anti noise down to 20, I am assuming it is going to be -80 sin(ω t)?
But A cannot be a negative number. I am not sure how to approach this problem.
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
 
berkeman said:
Welcome to PF. :smile:

What is the value of ##sin(\omega + \pi)## compared to ##sin(\omega)## ?
Oh, It's going to be ##sin(\omega + \pi)## = ##-sin(\omega)##
Should I make it ##sin(\omega t + \pi \omega)## = ##-sin(\omega t)## so that φ = ω π, A = 80?

But if that's the case, φ depends on ω, and in the second question it gives out:
CombinedSound = 100 sin(ω t) + 100 sin(ω t + π + δ) = 20 sin(ω t + SomePhase),
in which A = 100, φ = π+ δ. It is kind of contradict with what I just got. Am I on the right direction so far?

Appreciate your reply!
 
1630261771030.png

Correct.

1630261798625.png

No, just ##sin(\omega t + \pi) = -sin(\omega t)##
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
23K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K