Anything missing or redundant about this one-sided limit proof?

  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Limit Proof
Click For Summary

Homework Help Overview

The discussion revolves around the proof of one-sided limits for the function \( f(x) = x^{2/3} \) and \( f(x) = x^{3/2} \) as \( x \) approaches 0 from the right and left. Participants are evaluating the correctness and completeness of the proofs provided, questioning the definitions and assumptions involved in the limit processes.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss the validity of the proofs for right and left-hand limits, with some questioning the definitions of the functions for negative values of \( x \). Others suggest that the proofs could be improved or clarified, particularly regarding the conditions under which the limits are defined.

Discussion Status

The discussion is ongoing, with various interpretations being explored. Some participants express agreement with the proofs, while others raise concerns about the assumptions made, particularly regarding the continuity and definition of the functions involved. There is no explicit consensus, but several productive points have been raised for further consideration.

Contextual Notes

Participants note that \( f(x) = x^{3/2} \) is not defined for \( x < 0 \) in the context of real numbers, which affects the validity of the left-hand limit proof. Additionally, there is mention of the need for clarity in the proofs regarding the nature of the functions being discussed, particularly in relation to invertible functions.

mcastillo356
Gold Member
Messages
658
Reaction score
361
Homework Statement
Prove ##\lim{(x^{2/3})}## when ##x\rightarrow{0^{+}}## is 0
Relevant Equations
##\forall{\epsilon>0}##, find ##\delta>0## such that ##0<x<\delta\Rightarrow{|f(x)|<\epsilon}##
Hi, PF

In a Spanish math forum I got this proof of a right hand limit:

"For a generic ##\epsilon>0##, in case the inequality is met, we have the following: ##|x^{2/3}|<\epsilon\Rightarrow{|x|^{2/3}}\Rightarrow{|x|<\epsilon^{3/2}}##. Therein lies the condition. If ##x>0##, then ##|x|=x##; therefore, if the following holds: ##0<x<\epsilon^{3/2}\Rightarrow{|f(x)|<\epsilon}##, eventually, we can state: ##\forall{\epsilon>0}\;\exists{\delta>0}## s.t. ##0<x<\delta\Rightarrow{|f(x)|<\epsilon}##. In conclusion, the ##\delta## sought is epsilon elevated to three means, ##\delta=\epsilon^{3/2}##."

What is your opinion? It's right, yes, but... Something tells me it shall be improved.

Love

I'm going to click, no preview.🤞
 
Physics news on Phys.org
mcastillo356 said:
In conclusion, the δ sought is epsilon elevated to three means, δ=ϵ3/2."
Epsilon raised to the three-halves power. Since the purported limit is 0, it would be nice, but not essential to start with ##|x^{2/3} - 0| < \epsilon##, but that's a very minor nit. Otherwise, I don't see anything wrong with the proof.
 
  • Like
Likes   Reactions: mcastillo356
Proof of left handed limit for ##x^{3/2}##, when ##x\rightarrow{0^{-}}##

For a generic ##\epsilon>0##, in case the inequality mets (or inequation? Is it an algebraic inequality?), we have the following: ##|x^{2/3}|<\epsilon\Rightarrow{|x|^{2/3}< \epsilon}\Rightarrow{|x|<\epsilon^{3/2}}##. Therein lies the condition. If ##x<0##, then ##|x|=-x##; therefore, if the following holds: ##-\epsilon^{3/2}<x<0\Rightarrow{|f(x)|<\epsilon}##, eventually, we can state, ##\forall{\epsilon>0}\;\exists{\delta>0}## s.t. ##-\delta<x<0\Rightarrow{|f(x)|<\epsilon}##. In conclusion, the ##\delta## sought is epsilon raised to the three-halves power, ##\delta=\epsilon^{3/2}##.

Right?
 
Last edited by a moderator:
mcastillo356 said:
Proof of left handed limit for ##x^{3/2}##, when ##x\rightarrow{0^{-}}##

For a generic ##\epsilon>0##, in case the inequality mets (or inequation? Is it an algebraic inequality?), we have the following: ##|x^{2/3}|<\epsilon\Rightarrow{|x|^{2/3}< \epsilon}\Rightarrow{|x|<\epsilon^{3/2}}##. Therein lies the condition. If ##x<0##, then ##|x|=-x##; therefore, if the following holds: ##-\epsilon^{3/2}<x<0\Rightarrow{|f(x)|<\epsilon}##, eventually, we can state, ##\forall{\epsilon>0}\;\exists{\delta>0}## s.t. ##-\delta<x<0\Rightarrow{|f(x)|<\epsilon}##. In conclusion, the ##\delta## sought is epsilon raised to the three-halves power, ##\delta=\epsilon^{3/2}##.

Right?
No.
##x^{3/2}## isn't defined for x < 0 if you're limited to real output values.

Think about it -- if x = -0.1, say, then you have to evaluate either ##\sqrt{-.1^3}##, or ##(\sqrt{-.1})^3##, neither of which is real.

The reason for the right-hand limit of the first post is precisely because the function isn't defined for negative x, so the left-hand limit doesn't exist, either.
 
  • Like
Likes   Reactions: mcastillo356
I disagree. We deal with absolute values
 
mcastillo356 said:
I disagree. We deal with absolute values

Only a sith deals in absolutes.

But seriously, what does this mean? Is your function actually ##|x|^{3/2}##?
 
  • Like
Likes   Reactions: mcastillo356
mcastillo356 said:
I disagree. We deal with absolute values
That's not the limit you wrote in post #3:
mcastillo356 said:
Proof of left handed limit for ##x^{3/2}##, when ##x\rightarrow{0^{-}}##
Again, ##f(x) = x^{3/2}## is defined (as a real valued function) only for ##x \ge 0##.
 
  • Informative
Likes   Reactions: mcastillo356
:doh:
I meant ##f(x)=x^{2/3}##
 
Sorry, I will try to mend it.
 
  • #10
I think the proof is fine then.
 
  • Love
Likes   Reactions: mcastillo356
  • #11
Hi, PF

Mark44 said:
No.
##x^{3/2}## isn't defined for x < 0 if you're limited to real output values.

Think about it -- if x = -0.1, say, then you have to evaluate either ##\sqrt{-.1^3}##, or ##(\sqrt{-.1})^3##, neither of which is real.

The reason for the right-hand limit of the first post is precisely because the function isn't defined for negative x, so the left-hand limit doesn't exist, either.

##\lim{(x^{3/2})}## when ##x\rightarrow{0^{+}}## is ##0##

Proof

##\forall{\epsilon>0}\;\exists{\delta>0}## s.t. ##0<x<\delta\Rightarrow{|f(x)|<\epsilon}##

Pick a ##\delta=\epsilon^{2/3}##. This way, ##f(x)## can be as closer to ##0## as desired, getting ##x## close enough to ##0##, ##0<x<\delta=\epsilon^{2/3}##

This right hand limit equals ##f(0)=0##, but it will never be continous, as @Mark44 suggests, and the graph shows:

geogebra-export (3).png

Right? I've wrote not checking.
 
Last edited by a moderator:
  • #12
mcastillo356 said:
Hi, PF
##\lim{(x^{3/2})}## when ##x\rightarrow{0^{+}}## is ##0##

Proof

##\forall{\epsilon>0}\;\exists{\delta>0}## s.t. ##0<x<\delta\Rightarrow{|f(x)|<\epsilon}##

Pick a ##\delta=\epsilon^{2/3}##. This way, ##f(x)## can be as closer to ##0## as desired, getting ##x## close enough to ##0##, ##0<x<\delta=\epsilon^{2/3}##
You should show explicitly how ##\delta=\epsilon^{2/3}## implies that ##|x^{3/2} - 0 | < \epsilon##.
mcastillo356 said:
This right hand limit equals ##f(0)=0##, but it will never be continous, as @Mark44 suggests, and the graph shows:
No, that's not what I suggested. The function ##f(x) = x^{3/2}## is continuous on its domain, ##[0, \infty)##, and is right-continuous at 0.
mcastillo356 said:
View attachment 294897

Right? I've wrote not checking.
 
  • Like
Likes   Reactions: mcastillo356
  • #13
Re reading this thread, I think there is actually a piece that is not spelled out specifically enough. As written, you can basically replace ##f(x)=x^{2/3}## with any invertible function, and it's not super obvious which step stops working. Do you know?
 
  • Wow
Likes   Reactions: mcastillo356
  • #14
Office_Shredder said:
Re reading this thread, I think there is actually a piece that is not spelled out specifically enough. As written, you can basically replace ##f(x)=x^{2/3}## with any invertible function, and it's not super obvious which step stops working. Do you know?
Sorry, can you explain further?
 
  • #15
mcastillo356 said:
Sorry, can you explain further?

Let ##f## be an invertible function with ##f(0)=0##. Then for any ##\epsilon>0##, let ##\delta=f^{-1}(\epsilon)##. Then ##0<x< f^{-1}(\epsilon)## implies ##f(x)<\epsilon##. Hence ##\lim_{x\to 0^+} f(x)=0##.

Do you see the error in this proof for an arbitrary function? I just copied what you did for ##x^{2/3}##
 
  • Informative
Likes   Reactions: mcastillo356
  • #16
Let me see... It only works because it's fractional, even, and positive power function. No. Counterexample: absolute value function for real numbers; square root function. Haven't checked, give me some time
 
  • #17
mcastillo356 said:
Let me see... It only works because it's fractional, even, and positive power function. No. Counterexample: absolute value function for real numbers; square root function. Haven't checked, give me some time

It might help to think of an invertible function ##f:[0,\infty) \to \mathbb{R}## which is *not* continuous at 0 (this is not super hard, but not a totally trivial thing to do)
 
  • Informative
Likes   Reactions: mcastillo356
  • #18
Office_Shredder said:
Let ##f## be an invertible function with ##f(0)=0##. Then for any ##\epsilon>0##, let ##\delta=f^{-1}(\epsilon)##. Then ##0<x< f^{-1}(\epsilon)## implies ##f(x)<\epsilon##. Hence ##\lim_{x\to 0^+} f(x)=0##.

Do you see the error in this proof for an arbitrary function? I just copied what you did for ##x^{2/3}##
But it is an increasing function. ##f(x)<\epsilon\;\forall{\epsilon>0}##:confused:
 
  • #19
mcastillo356 said:
But it is an increasing function.
But you did not note the dependence on that in your proof, let alone prove it.
 
  • Sad
Likes   Reactions: mcastillo356
  • #20
haruspex said:
But you did not note the dependence on that in your proof, let alone prove it.
Incisive remark. Definitely, there was something missing. I'm working on it.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
16
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
7
Views
1K