- #1
yucheng
- 232
- 57
- Homework Statement
- Proposition 5.3.10 (Multiplication is well defined). Let ##x = \mathrm{LIM}_{n\to\infty} a_n##, ##y = \mathrm{LIM}_{n\to\infty} b_n##, and ##x' = \mathrm{LIM}_{n\to\infty} a'_n## be real numbers. If ##x=x'##, then ##xy=x'y##.
- Relevant Equations
- N/A
I have referred to this page: https://taoanalysis.wordpress.com/2020/03/26/exercise-5-3-2/ to check my answer.
The way I thought of the problem:
I know ##xy = \mathrm{LIM}_{n\to\infty} a_n b_n## and I know ##x'y = \mathrm{LIM}_{n\to\infty} a'_n b_n##. Thus if ##xy=x'y##, maybe I can try showing that ##|a_n b_n-a'_n b_n| \leq \epsilon##?
My solution:
Given that ##x=x'##, we know ##\forall\delta>0:(\exists N\geq 1: (\forall n \geq N:|a_n-a'_n|\leq\delta))##. We also know that ##y## is the formal limit of a Cauchy sequence ##(b_n)_{n=1}^\infty##, which is bounded by a rational M, i.e. ##|b_n| \leq M \implies \frac{1}{|b_n|}\geq \frac{1}{M}##. Let ##\delta:=\frac{\epsilon}{M}\leq\frac{\epsilon}{|b_n|}##. From this, we can see that
\begin{align*}
|a_n-a'_n|&\leq\delta\\
&=\frac{\epsilon}{M}\\
&\leq\frac{\epsilon}{|b_n|}\\
\implies |a_n-a'_n|&\leq\frac{\epsilon}{|b_n|}\\
|a_n-a'_n||b_n|&\leq\epsilon
\end{align*}
Thus ##|a_n b_n -a'_n b_n|\leq\epsilon## , ##(a_n b_n)_{n=1}^\infty## is equivalent to ##(a'_n b_n)_{n=1}^\infty##, xy is equivalent to x'y.
Is this correct?
P.S. we have shown the laws of algebra and of order holds for rationals, before this.
The way I thought of the problem:
I know ##xy = \mathrm{LIM}_{n\to\infty} a_n b_n## and I know ##x'y = \mathrm{LIM}_{n\to\infty} a'_n b_n##. Thus if ##xy=x'y##, maybe I can try showing that ##|a_n b_n-a'_n b_n| \leq \epsilon##?
My solution:
Given that ##x=x'##, we know ##\forall\delta>0:(\exists N\geq 1: (\forall n \geq N:|a_n-a'_n|\leq\delta))##. We also know that ##y## is the formal limit of a Cauchy sequence ##(b_n)_{n=1}^\infty##, which is bounded by a rational M, i.e. ##|b_n| \leq M \implies \frac{1}{|b_n|}\geq \frac{1}{M}##. Let ##\delta:=\frac{\epsilon}{M}\leq\frac{\epsilon}{|b_n|}##. From this, we can see that
\begin{align*}
|a_n-a'_n|&\leq\delta\\
&=\frac{\epsilon}{M}\\
&\leq\frac{\epsilon}{|b_n|}\\
\implies |a_n-a'_n|&\leq\frac{\epsilon}{|b_n|}\\
|a_n-a'_n||b_n|&\leq\epsilon
\end{align*}
Thus ##|a_n b_n -a'_n b_n|\leq\epsilon## , ##(a_n b_n)_{n=1}^\infty## is equivalent to ##(a'_n b_n)_{n=1}^\infty##, xy is equivalent to x'y.
Is this correct?
P.S. we have shown the laws of algebra and of order holds for rationals, before this.
Last edited: