MHB Approximating Pi to Different Digits

  • Thread starter Thread starter soroban
  • Start date Start date
  • Tags Tags
    Pi
Click For Summary
The discussion focuses on methods for approximating the value of Pi (π) to various digits using continued fractions. The approximations presented include stopping at different points in the fraction series, yielding values such as 22/7, 355/113, and 104,348/33,215. Each approximation provides increasing accuracy, with the final approximation reaching 3.141592654. The calculations illustrate how continued fractions can effectively represent irrational numbers like Pi. Overall, the thread emphasizes the mathematical techniques behind approximating Pi to different levels of precision.
soroban
Messages
191
Reaction score
0

Watch this . . .\pi \;=\;3.141592645

. . = \;3 + 0.141592654 \;=\; 3 + \dfrac{1}{7.062573306} . [1]

. . =\;3 + \dfrac{1}{7 + 0.062573306} \;=\; 3 + \frac{1}{7+ \dfrac{1}{15.99659441}} .[2]

. . =\;3 + \dfrac{1}{7 + \dfrac{1}{15 + 0.99659441}} \;=\; 3 + \dfrac{1}{7 + \dfrac{1}{15 + \dfrac{1}{1.003417228}}}

. . [=\;3 + \dfrac{1}{7 + \dfrac{1}{15 + \dfrac{1}{1 + 0.003417228}}} \;=\;3 + \dfrac{1}{7 + \dfrac{1}{15 + \dfrac{1}{1 + \dfrac{1}{292.6348491}}}} .[3]If we stop at [1]: .\pi \;\approx\;3+\frac{1}{7} \;=\;\frac{22}{7} \;=\;3.142857...

If we stop at [2]: .\pi\;\approx\;3 + \frac{1}{7 + \dfrac{1}{16}} \;=\;\frac{355}{113} \;=\;3.14159292...

If we stop at [3]: .\pi \;\approx\;3 + \frac{1}{7+\dfrac{1}{15+\dfrac{1}{1 + \dfrac{1}{293}}}} \;=\;\frac{104,\!348}{33,\!215} \;=\;3.141592654...
 
Mathematics news on Phys.org
This was part of a series of lessons I did at a Harry Potter site, so disregard the first few sentences :P

lesson7part1.jpg

Pi-unrolled-720.gif

lesson7part2.jpg

pi1.jpg

lesson7part3.jpg

pi2.jpg

lesson7part4.jpg

pi3.jpg

lesson7part5.jpg

lesson7part6.jpg
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 3 ·
Replies
3
Views
5K