suremarc
- 147
- 65
fresh_42 said:1. Let ##A\in \mathbb{M}_{m,n}(\mathbb{R})## and ##b\in \mathbb{R}^m##. Then exactly one of the following two statements is true:
The ordering is meant componentwise.
- ##Ax=b\, , \,x\geq 0 \,,## is solvable for a ##x\in \mathbb{R}^n.##
- ##A^\tau y\leq 0\, , \,b^\tau y> 0\,,## is solvable for some ##y\in \mathbb{R}^m.##
Lemma 1. ##\mathbf{x\geq 0}\iff (\forall \mathbf{y\geq 0})\,\,\mathbf{x^\top y}\geq 0.##
The latter implies the former since one can choose ##\mathbf{y=e}_i##.
Corollary. ##\; \mathbf{x\leq 0}\iff (\forall \mathbf{y\geq 0})\,\,\mathbf{x^\top y}\leq 0.##
This follows by substituting ##\mathbf{-x}## for ##\mathbf{x}##.
Lemma 2. ##(\forall \mathbf{x}\in\mathbb{R}^n)\,\, A\mathbf{x=b}\iff(\exists\mathbf{w}\in\mathbb{R}^n)\,\,\mathbf{x}=A^+\mathbf{b}+(I-A^+A)\mathbf{w}.##
##A^+## denotes the (possibly nonunique) Moore-Penrose pseudo-inverse of ##A##.
Lemma 3. The map ##\mathbf{v}^\top:V\rightarrow \mathbb{R}## for a nonzero vector ##\mathbf{v}## is surjective.
We handle the case ##\mathbf{b\neq 0}##, as the case for ##\mathbf{b=0}## can be verified trivially.
We have the two statements $$\begin{align} & \quad(\exists\mathbf{x\geq 0}\in\mathbb{R}^n)\,\,A\mathbf{x}=\mathbf{b} \\ & \quad (\exists\mathbf{y}\in\mathbb{R}^m)\,\, A^\top\mathbf{y\leq 0},\,\mathbf{b}^\top\mathbf{y}>0\end{align}$$ To prove that exactly one of these two statements is true, we prove that the negation of ##(2)## is equivalent to ##(1)##. The negation of ##(2)##, which we will call ##\neg(2)##, has the following expression: $$(\forall\mathbf{y}\in\mathbb{R}^m)\,\, A^\top\mathbf{y\leq 0}\Rightarrow \mathbf{b^\top y}\leq 0.$$ We proceed by proving ##\neg(2)\Rightarrow(1)## and ##(1)\Rightarrow\neg(2)##:
The proof in the other direction is much simpler. Suppose ##(\exists\mathbf{x}\geq 0\in\mathbb{R}^n)\,\,A\mathbf{x=b}.## By Lemma 1, it follows that if ##A^\top\mathbf{y\leq 0}##, then ##\mathbf{b^\top y}=\mathbf{x}^\top A^\top\mathbf{y}\leq 0.## We have proved that ##(1)\Rightarrow\neg(2)##. ##\blacksquare##
The latter implies the former since one can choose ##\mathbf{y=e}_i##.
Corollary. ##\; \mathbf{x\leq 0}\iff (\forall \mathbf{y\geq 0})\,\,\mathbf{x^\top y}\leq 0.##
This follows by substituting ##\mathbf{-x}## for ##\mathbf{x}##.
Lemma 2. ##(\forall \mathbf{x}\in\mathbb{R}^n)\,\, A\mathbf{x=b}\iff(\exists\mathbf{w}\in\mathbb{R}^n)\,\,\mathbf{x}=A^+\mathbf{b}+(I-A^+A)\mathbf{w}.##
##A^+## denotes the (possibly nonunique) Moore-Penrose pseudo-inverse of ##A##.
Lemma 3. The map ##\mathbf{v}^\top:V\rightarrow \mathbb{R}## for a nonzero vector ##\mathbf{v}## is surjective.
We handle the case ##\mathbf{b\neq 0}##, as the case for ##\mathbf{b=0}## can be verified trivially.
We have the two statements $$\begin{align} & \quad(\exists\mathbf{x\geq 0}\in\mathbb{R}^n)\,\,A\mathbf{x}=\mathbf{b} \\ & \quad (\exists\mathbf{y}\in\mathbb{R}^m)\,\, A^\top\mathbf{y\leq 0},\,\mathbf{b}^\top\mathbf{y}>0\end{align}$$ To prove that exactly one of these two statements is true, we prove that the negation of ##(2)## is equivalent to ##(1)##. The negation of ##(2)##, which we will call ##\neg(2)##, has the following expression: $$(\forall\mathbf{y}\in\mathbb{R}^m)\,\, A^\top\mathbf{y\leq 0}\Rightarrow \mathbf{b^\top y}\leq 0.$$ We proceed by proving ##\neg(2)\Rightarrow(1)## and ##(1)\Rightarrow\neg(2)##:
First, we will rewrite ##\neg(2)## in terms of preimages of sets: $$(A^\top)^{-1}(\mathbb{R}^n_{\leq 0})\subseteq(\mathbf{b}^\top)^{-1}(\mathbb{R}_{\leq0})$$ By Lemma 2, the preimage of any set under ##A^\top## splits thus: $$(A^\top)^{-1}(\mathbb{R}^n_{>0})=A^\top(\mathbb{R}^n_{>0})\oplus\mathrm{Im}\big(I-(A^+)^\top A^\top\big)$$ Since ##\mathbf{b}^\top## is surjective, it follows that ##(\mathbf{b}^\top\circ(\mathbf{b}^\top)^{-1})(S)=S##. Applying ##\mathbf{b^\top}## to both sides, we get $$(A\mathbf{b})^\top(\mathbb{R}^n_{\leq 0})+((I-AA^+)\mathbf{b})^\top(\mathbb{R})\subseteq\mathbb{R}_{\leq 0}$$ where ##+## here denotes the sumset or Minkowski sum. If ##((I-AA^+)\mathbf{b})^\top## is nonzero, then it is surjective by Lemma 3, which would imply that ##\mathbb{R}\subseteq\mathbb{R}_{\leq 0}##. Hence ##(I-AA^+)\mathbf{b}## is zero, and one has $$(A^+\mathbf{b})^\top(\mathbb{R}^n_{\leq 0})\subseteq\mathbb{R}_{\leq 0}.$$ This is equivalent to $$(A^+\mathbf{b})^\top(-1\cdot\mathbb{R}^n_{\geq 0})\subseteq-1\cdot\mathbb{R}_{\geq 0}$$ and by linearity we have $$(A^+\mathbf{b})^\top(\mathbb{R}^n_{\geq 0})\subseteq\mathbb{R}_{\geq 0}$$ in other words, ##A^+\mathbf{b}\geq\mathbf{0}## (Lemma 1). Moreover, since ##(I-AA^+)\mathbf{b}## is zero, or ##\mathbf{b}=AA^+\mathbf{b}##, it follows that if ##\mathbf{x}=A^+\mathbf{b}##, then ##A\mathbf{x}=AA^+\mathbf{b=b}.## We have proven that ##\neg(2)\Rightarrow(1).##
The proof in the other direction is much simpler. Suppose ##(\exists\mathbf{x}\geq 0\in\mathbb{R}^n)\,\,A\mathbf{x=b}.## By Lemma 1, it follows that if ##A^\top\mathbf{y\leq 0}##, then ##\mathbf{b^\top y}=\mathbf{x}^\top A^\top\mathbf{y}\leq 0.## We have proved that ##(1)\Rightarrow\neg(2)##. ##\blacksquare##