Mentz114 said:
Can you show the working ?
The conditions for null geodesic are
##\frac{d^2x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##
Multiply by ##2g_{mi}## and sum w/respect to ##i##
##2g_{mi}\frac{d^2x^i}{d\lambda^2} + 2g_{mi}\Gamma^i_{jk} \frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##
But
##\frac{d}{d\lambda}(2g_{mi}\frac{dx^i}{d\lambda})=##
##=2( \frac{dg_{mi}}{d\lambda} \frac{dx^i}{d\lambda}+g_{mi}\frac{d^2x^i}{d\lambda^2})=##
##=2(\frac{\partial g_{mi}}{\partial x^k}\frac{dx^k}{d\lambda}\frac{dx^i}{d\lambda}+g_{mi}\frac{d^2x^i}{d\lambda^2})=##
##=\frac{\partial g_{mi}}{\partial x^k}\frac{dx^k}{d\lambda}\frac{dx^i}{d\lambda}+\frac{\partial g_{mi}}{\partial x^k}\frac{dx^k}{d\lambda}\frac{dx^i}{d\lambda}+2g_{mi}\frac{d^2x^i}{d\lambda^2}=##
In the first term, rename ##i## to ##j##
In the second term, rename ##i## to ##k## and ##k## to ##j##:
##=(\frac{\partial g_{mj}}{\partial x^k}+\frac{\partial g_{mk}}{\partial x^j})\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} + 2g_{mi}\frac{d^2x^i}{d\lambda^2}##
Then
##2g_{mi}\frac{d^2x^i}{d\lambda^2}=\frac{d}{d\lambda}(2g_{mi}\frac{dx^i}{d\lambda})-(\frac{\partial g_{mj}}{\partial x^k}+\frac{\partial g_{mk}}{\partial x^j})\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda}##
Plug this in the starting expression for the null geodesics ##\frac{d^2x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##:
##\frac{d}{d\lambda}(2g_{mi}\frac{dx^i}{d\lambda})-(\frac{\partial g_{mj}}{\partial x^k}+\frac{\partial g_{mk}}{\partial x^j})\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda}+ \Gamma^i_{jk} \frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##
But from the definition of Cristoffel symbol of the 1st kind ##[jk,m]=2g_{mi}\Gamma^i_{jk}##
##2g_{mi}\Gamma^i_{jk} = 2[jk,m] = 2\frac{1}{2} (\frac{\partial g_{km}}{\partial x^j}+\frac{\partial g_{mj}}{\partial x^k}-\frac{\partial g_{jk}}{\partial x^m}) = ##
##=\frac{\partial g_{mk}}{\partial x^j}+\frac{\partial g_{mj}}{\partial x^k}-\frac{\partial g_{jk}}{\partial x^m}##
because the metric tensor is symmetrical, ##g_{km}=g_{mk}##;
Plug this in the main equation and get
##\frac{d}{d\lambda}(2g_{mi}\frac{dx^i}{d\lambda})-(\frac{\partial g_{mj}}{\partial x^k}+\frac{\partial g_{mk}}{\partial x^j})\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda}+(\frac{\partial g_{mk}}{\partial x^j}+\frac{\partial g_{mj}}{\partial x^k}-\frac{\partial g_{jk}}{\partial x^m})\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##
Cancel and arrive at the condition for null geodesic
##\frac{d}{d\lambda}(2g_{mi}\frac{dx^i}{d\lambda})-\frac{\partial g_{jk}}{\partial x^m}\frac{dx^j}{d\lambda}\frac{dx^k}{d\lambda} = 0##,
##m=1,...,N##